''' This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). PM4Py is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PM4Py is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PM4Py. If not, see . ''' from pm4py.algo.conformance.tokenreplay.variants import token_replay from pm4py.statistics.variants.log import get as variants_module from pm4py.objects.petri_net.obj import PetriNet from pm4py.objects.random_variables.random_variable import RandomVariable from pm4py.objects.petri_net.utils import performance_map from pm4py.util import exec_utils, xes_constants from pm4py.algo.conformance.tokenreplay import algorithm as executor from enum import Enum from pm4py.util import constants from copy import copy class Parameters(Enum): ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY TOKEN_REPLAY_VARIANT = "token_replay_variant" PARAM_NUM_SIMULATIONS = "num_simulations" PARAM_FORCE_DISTRIBUTION = "force_distribution" PARAM_ENABLE_DIAGNOSTICS = "enable_diagnostics" PARAM_DIAGN_INTERVAL = "diagn_interval" PARAM_CASE_ARRIVAL_RATIO = "case_arrival_ratio" PARAM_PROVIDED_SMAP = "provided_stochastic_map" PARAM_MAP_RESOURCES_PER_PLACE = "map_resources_per_place" PARAM_DEFAULT_NUM_RESOURCES_PER_PLACE = "default_num_resources_per_place" PARAM_SMALL_SCALE_FACTOR = "small_scale_factor" PARAM_MAX_THREAD_EXECUTION_TIME = "max_thread_exec_time" def get_map_from_log_and_net(log, net, initial_marking, final_marking, force_distribution=None, parameters=None): """ Get transition stochastic distribution map given the log and the Petri net Parameters ----------- log Event log net Petri net initial_marking Initial marking of the Petri net final_marking Final marking of the Petri net force_distribution If provided, distribution to force usage (e.g. EXPONENTIAL) parameters Parameters of the algorithm, including: Parameters.ACTIVITY_KEY -> activity name Parameters.TIMESTAMP_KEY -> timestamp key Returns ----------- stochastic_map Map that to each transition associates a random variable """ stochastic_map = {} if parameters is None: parameters = {} token_replay_variant = exec_utils.get_param_value(Parameters.TOKEN_REPLAY_VARIANT, parameters, executor.Variants.TOKEN_REPLAY) activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY) timestamp_key = exec_utils.get_param_value(Parameters.TIMESTAMP_KEY, parameters, xes_constants.DEFAULT_TIMESTAMP_KEY) parameters_variants = {constants.PARAMETER_CONSTANT_ACTIVITY_KEY: activity_key} variants_idx = variants_module.get_variants_from_log_trace_idx(log, parameters=parameters_variants) variants = variants_module.convert_variants_trace_idx_to_trace_obj(log, variants_idx) parameters_tr = copy(parameters) parameters_tr[token_replay.Parameters.ACTIVITY_KEY] = activity_key parameters_tr[token_replay.Parameters.VARIANTS] = variants parameters_ses = copy(parameters) # do the replay aligned_traces = executor.apply(log, net, initial_marking, final_marking, variant=token_replay_variant, parameters=parameters_tr) element_statistics = performance_map.single_element_statistics(log, net, initial_marking, aligned_traces, variants_idx, activity_key=activity_key, timestamp_key=timestamp_key, parameters=parameters_ses) for el in element_statistics: if type(el) is PetriNet.Transition and "performance" in element_statistics[el]: values = element_statistics[el]["performance"] rand = RandomVariable() rand.calculate_parameters(values, force_distribution=force_distribution) no_of_times_enabled = element_statistics[el]['no_of_times_enabled'] no_of_times_activated = element_statistics[el]['no_of_times_activated'] if no_of_times_enabled > 0: rand.set_weight(float(no_of_times_activated) / float(no_of_times_enabled)) else: rand.set_weight(0.0) stochastic_map[el] = rand return stochastic_map