''' This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). PM4Py is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PM4Py is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PM4Py. If not, see . ''' import sys from pm4py.objects.random_variables.basic_structure import BasicStructureRandomVariable class Deterministic(BasicStructureRandomVariable): """ Describes a deterministic random variable """ def __init__(self, value=0): """ Constructor Parameters ---------- value Constant value of the distribution """ BasicStructureRandomVariable.__init__(self) self.value = value self.priority = 1 def read_from_string(self, distribution_parameters): """ Initialize distribution parameters from string Parameters ----------- distribution_parameters Current distribution parameters as exported on the Petri net """ self.value = distribution_parameters def get_transition_type(self): """ Get the type of transition associated to the current distribution Returns ----------- transition_type String representing the type of the transition """ return "DETERMINISTIC" def get_distribution_type(self): """ Get current distribution type Returns ----------- distribution_type String representing the distribution type """ return "DETERMINISTIC" def get_distribution_parameters(self): """ Get a string representing distribution parameters Returns ----------- distribution_parameters String representing distribution parameters """ return str(self.value) def get_value(self): """ Get a random value following the distribution Returns ----------- value Value obtained following the distribution """ return self.value def get_values(self, no_values=400): """ Get some random values following the distribution Parameters ----------- no_values Number of values to return Returns ---------- values Values extracted according to the probability distribution """ return [self.get_value() for i in range(no_values)] def calculate_loglikelihood(self, values, tol=0.0001): """ Calculate log likelihood Parameters ------------ values Empirical values to work on tol Tolerance about float values (consider them 0?) Returns ------------ likelihood Log likelihood that the values follows the distribution """ values_0 = [x for x in values if abs(x-self.value) < tol] if len(values) == len(values_0): return sys.float_info.max return -sys.float_info.max