''' This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). PM4Py is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PM4Py is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PM4Py. If not, see . ''' import sys import numpy as np from pm4py.objects.random_variables.basic_structure import BasicStructureRandomVariable class Exponential(BasicStructureRandomVariable): """ Describes a normal variable """ def __init__(self, loc=1, scale=1): """ Constructor Parameters ----------- loc Loc of the distribution (see docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html) scale Scale of the distribution """ self.loc = loc self.scale = scale self.priority = 0 BasicStructureRandomVariable.__init__(self) def read_from_string(self, distribution_parameters): """ Initialize distribution parameters from string Parameters ----------- distribution_parameters Current distribution parameters as exported on the Petri net """ self.loc = 0 self.scale = 1.0 / float(distribution_parameters) def get_distribution_type(self): """ Get current distribution type Returns ----------- distribution_type String representing the distribution type """ return "EXPONENTIAL" def get_distribution_parameters(self): """ Get a string representing distribution parameters Returns ----------- distribution_parameters String representing distribution parameters """ if self.scale > 0: return str(1.0 / float(self.scale)) return "UNDEFINED" def calculate_loglikelihood(self, values): """ Calculate log likelihood Parameters ------------ values Empirical values to work on Returns ------------ likelihood Log likelihood that the values follows the distribution """ from scipy.stats import expon if len(values) > 1: somma = 0 for value in values: somma = somma + np.log(expon.pdf(value, self.loc, self.scale)) return somma return -sys.float_info.max def calculate_parameters(self, values): """ Calculate parameters of the current distribution Parameters ----------- values Empirical values to work on """ from scipy.stats import expon if len(values) > 1: self.loc, self.scale = expon.fit(values, floc=0) def get_value(self): """ Get a random value following the distribution Returns ----------- value Value obtained following the distribution """ from scipy.stats import expon return expon.rvs(self.loc, self.scale)