import pm4py import os import duckdb def execute_script(): """ Scripts to check the query provided (in the script 01_1_...) for the "protected" group against the ground truth (that for the logs included in pm4py is reported in the log) and measure the quality of the classification. """ dataframe = pm4py.read_xes("../../tests/input_data/fairness/renting_log_high.xes.gz") protected_attr = [x for x in dataframe.columns if "protected" in x][0] sql_query = """ SELECT * FROM dataframe WHERE "case:citizen" = 'False' OR "case:gender" = 'True' OR "case:german speaking" = 'False' OR "case:married" = 'False'; """ dataframe_pos = duckdb.sql(sql_query).to_df() cases_pos = dataframe_pos["case:concept:name"].unique() dataframe_neg = dataframe[~dataframe["case:concept:name"].isin(cases_pos)] dataframe_pos = dataframe_pos.groupby("case:concept:name").first() dataframe_neg = dataframe_neg.groupby("case:concept:name").last() tp = len(dataframe_pos[dataframe_pos[protected_attr] == True]) fp = len(dataframe_pos[dataframe_pos[protected_attr] == False]) print("true positives", tp) print("false positives", fp) fn = len(dataframe_neg[dataframe_neg[protected_attr] == True]) tn = len(dataframe_neg[dataframe_neg[protected_attr] == False]) print("false negatives", fn) print("true negatives", tn) if __name__ == "__main__": execute_script()