import os import pm4py from pm4py.util import constants, pandas_utils from pm4py.algo.discovery.dfg.adapters.pandas import df_statistics from pm4py.objects.conversion.dfg import converter as dfg_conv from pm4py.statistics.attributes.pandas import get as att_get from pm4py.statistics.end_activities.pandas import get as ea_get from pm4py.statistics.service_time.pandas import get as soj_time_get from pm4py.statistics.concurrent_activities.pandas import get as conc_act_get from pm4py.statistics.eventually_follows.pandas import get as efg_get from pm4py.statistics.start_activities.pandas import get as sa_get from examples import examples_conf import importlib.util def execute_script(): log_path = os.path.join("..", "tests", "input_data", "interval_event_log.csv") dataframe = pandas_utils.read_csv(log_path) log_path = os.path.join("..", "tests", "input_data", "reviewing.xes") log = pm4py.read_xes(log_path) dataframe = pm4py.convert_to_dataframe(log) parameters = {} #parameters[constants.PARAMETER_CONSTANT_START_TIMESTAMP_KEY] = "start_timestamp" parameters[constants.PARAMETER_CONSTANT_TIMESTAMP_KEY] = "time:timestamp" parameters[constants.PARAMETER_CONSTANT_ACTIVITY_KEY] = "concept:name" parameters[constants.PARAMETER_CONSTANT_CASEID_KEY] = "case:concept:name" parameters["strict"] = True parameters["format"] = examples_conf.TARGET_IMG_FORMAT start_activities = sa_get.get_start_activities(dataframe, parameters=parameters) end_activities = ea_get.get_end_activities(dataframe, parameters=parameters) att_count = att_get.get_attribute_values(dataframe, "concept:name", parameters=parameters) parameters["start_activities"] = start_activities parameters["end_activities"] = end_activities soj_time = soj_time_get.apply(dataframe, parameters=parameters) print("soj_time") print(soj_time) conc_act = conc_act_get.apply(dataframe, parameters=parameters) print("conc_act") print(conc_act) efg = efg_get.apply(dataframe, parameters=parameters) print("efg") print(efg) if importlib.util.find_spec("graphviz"): from pm4py.visualization.dfg import visualizer as dfg_vis_fact from pm4py.visualization.petri_net import visualizer as pn_vis dfg_freq, dfg_perf = df_statistics.get_dfg_graph(dataframe, measure="both", start_timestamp_key="start_timestamp") dfg_gv_freq = dfg_vis_fact.apply(dfg_freq, activities_count=att_count, variant=dfg_vis_fact.Variants.FREQUENCY, serv_time=soj_time, parameters=parameters) dfg_vis_fact.view(dfg_gv_freq) dfg_gv_perf = dfg_vis_fact.apply(dfg_perf, activities_count=att_count, variant=dfg_vis_fact.Variants.PERFORMANCE, serv_time=soj_time, parameters=parameters) dfg_vis_fact.view(dfg_gv_perf) net, im, fm = dfg_conv.apply(dfg_freq) gviz = pn_vis.apply(net, im, fm, parameters=parameters) pn_vis.view(gviz) if __name__ == "__main__": execute_script()