import pm4py from pm4py.algo.filtering.dfg import dfg_filtering from pm4py.algo.simulation.playout.dfg.variants import classic as dfg_playout from examples import examples_conf import importlib.util import os def execute_script(): log = pm4py.read_xes(os.path.join("..", "tests", "input_data", "receipt.xes")) activities = pm4py.get_event_attribute_values(log, "concept:name") dfg, sa, ea = pm4py.discover_dfg(log) # filters the DFG to make a simpler one perc = 0.5 dfg, sa, ea, activities = dfg_filtering.filter_dfg_on_activities_percentage(dfg, sa, ea, activities, perc) dfg, sa, ea, activities = dfg_filtering.filter_dfg_on_paths_percentage(dfg, sa, ea, activities, perc) # creates the simulated log simulated_log = dfg_playout.apply(dfg, sa, ea) print(simulated_log) print(len(simulated_log)) print(sum(x.attributes["probability"] for x in simulated_log)) # shows the two DFGs to show that they are identical if importlib.util.find_spec("graphviz"): pm4py.view_dfg(dfg, sa, ea, log=log, format=examples_conf.TARGET_IMG_FORMAT) new_dfg, new_sa, new_ea = pm4py.discover_dfg(simulated_log) if importlib.util.find_spec("graphviz"): pm4py.view_dfg(new_dfg, new_sa, new_ea, log=simulated_log, format=examples_conf.TARGET_IMG_FORMAT) for trace in simulated_log: print(list(x["concept:name"] for x in trace)) print(trace.attributes["probability"], dfg_playout.get_trace_probability(trace, dfg, sa, ea)) break dfg, sa, ea = pm4py.discover_dfg(log) variants = pm4py.get_variants_as_tuples(log) sum_prob_log_variants = 0.0 for var in variants: sum_prob_log_variants += dfg_playout.get_trace_probability(variants[var][0], dfg, sa, ea) print("percentage of behavior allowed from DFG that is in the log (from 0.0 to 1.0): ", sum_prob_log_variants) if __name__ == "__main__": execute_script()