from pm4py.objects.log.importer.xes import importer as xes_importer from pm4py.algo.discovery.inductive import algorithm as inductive_miner from pm4py.algo.discovery.footprints import algorithm as fp_discovery from pm4py.algo.conformance.footprints import algorithm as fp_conformance from pm4py.statistics.traces.generic.log import case_statistics from pm4py.algo.discovery.dfg import algorithm as dfg_discovery from pm4py.algo.filtering.log.paths import paths_filter from pm4py.util.vis_utils import human_readable_stat from pm4py.algo.filtering.log.variants import variants_filter from pm4py.statistics.variants.log import get as variants_get from examples import examples_conf import os import importlib.util def execute_script(): log = xes_importer.apply(os.path.join("..", "tests", "input_data", "receipt.xes")) throughput_time = case_statistics.get_median_case_duration(log) variants, variants_times = variants_get.get_variants_along_with_case_durations(log) dfg = dfg_discovery.apply(log) filtered_log = variants_filter.filter_log_variants_percentage(log, 0.2) # filtered_log = log tree = inductive_miner.apply(filtered_log) fp_log = fp_discovery.apply(log, variant=fp_discovery.Variants.ENTIRE_EVENT_LOG) fp_model = fp_discovery.apply(tree) conf = fp_conformance.apply(fp_log, fp_model) conf_occ = sorted([(x, dfg[x]) for x in conf], key=lambda y: (y[1], y[0][0], y[0][1]), reverse=True) print( "source activity\t\ttarget activity\t\toccurrences\t\tthroughput time log\t\tthroughput time traces with path") for i in range(min(10, len(conf_occ))): path = conf_occ[i][0] occ = conf_occ[i][1] red_log = paths_filter.apply(log, [path]) red_throughput_time = case_statistics.get_median_case_duration(red_log) print("%s\t\t%s\t\t%d\t\t%s\t\t%s" % ( path[0], path[1], occ, human_readable_stat(throughput_time), human_readable_stat(red_throughput_time))) variants_length = sorted([(x, len(variants[x])) for x in variants.keys()], key=lambda y: (y[1], y[0]), reverse=True) print("\nvariant\t\toccurrences\t\tthroughput time log\t\tthroughput time traces with path") for i in range(min(10, len(variants_length))): var = variants_length[i][0] vark = str(var) if len(vark) > 10: vark = vark[:10] occ = variants_length[i][1] fp_log_var = fp_discovery.apply(variants[var], variant=fp_discovery.Variants.ENTIRE_EVENT_LOG) conf_var = fp_conformance.apply(fp_log_var, fp_model) is_fit = str(len(conf_var) == 0) var_throughput = case_statistics.get_median_case_duration(variants[var]) print("%s\t\t%d\t\t%s\t\t%s\t\t%s" % (vark, occ, is_fit, throughput_time, human_readable_stat(var_throughput))) if importlib.util.find_spec("graphviz"): from pm4py.algo.conformance.footprints.util import tree_visualization from pm4py.visualization.process_tree import visualizer as pt_visualizer # print(conf_occ) conf_colors = tree_visualization.apply(tree, conf) if True: gviz = pt_visualizer.apply(tree, parameters={"format": examples_conf.TARGET_IMG_FORMAT, pt_visualizer.Variants.WO_DECORATION.value.Parameters.COLOR_MAP: conf_colors, pt_visualizer.Variants.WO_DECORATION.value.Parameters.ENABLE_DEEPCOPY: False}) pt_visualizer.view(gviz) if __name__ == "__main__": execute_script()