import logging import os, sys import unittest from pm4py.objects.conversion.log import converter as log_conversion from pm4py.algo.conformance.tokenreplay import algorithm as token_replay from pm4py.algo.conformance.tokenreplay.variants.token_replay import NoConceptNameException from pm4py.algo.discovery.inductive import algorithm as inductive_miner from pm4py.objects import petri_net from pm4py.objects.log.util import dataframe_utils from pm4py.util import constants, pandas_utils from pm4py.objects.log.importer.xes import importer as xes_importer from pm4py.objects.log.util import sampling, sorting, index_attribute from pm4py.objects.petri_net.exporter import exporter as petri_exporter from pm4py.visualization.petri_net.common import visualize as pn_viz from pm4py.objects.conversion.process_tree import converter as process_tree_converter # from tests.constants import INPUT_DATA_DIR, OUTPUT_DATA_DIR, PROBLEMATIC_XES_DIR INPUT_DATA_DIR = "input_data" OUTPUT_DATA_DIR = "test_output_data" PROBLEMATIC_XES_DIR = "xes_importer_tests" COMPRESSED_INPUT_DATA = "compressed_input_data" class InductiveMinerTest(unittest.TestCase): def obtain_petri_net_through_im(self, log_name, variant=inductive_miner.Variants.IM): # to avoid static method warnings in tests, # that by construction of the unittest package have to be expressed in such way self.dummy_variable = "dummy_value" if ".xes" in log_name: log = xes_importer.apply(log_name) else: df = pandas_utils.read_csv(log_name) df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) log = log_conversion.apply(df, variant=log_conversion.Variants.TO_EVENT_LOG) process_tree = inductive_miner.apply(log) net, marking, final_marking = process_tree_converter.apply(process_tree) return log, net, marking, final_marking def test_applyImdfToXES(self): # to avoid static method warnings in tests, # that by construction of the unittest package have to be expressed in such way self.dummy_variable = "dummy_value" # calculate and compare Petri nets obtained on the same log to verify that instances # are working correctly log1, net1, marking1, fmarking1 = self.obtain_petri_net_through_im( os.path.join(INPUT_DATA_DIR, "running-example.xes")) log2, net2, marking2, fmarking2 = self.obtain_petri_net_through_im( os.path.join(INPUT_DATA_DIR, "running-example.xes")) log1 = sorting.sort_timestamp(log1) log1 = sampling.sample(log1) log1 = index_attribute.insert_trace_index_as_event_attribute(log1) log2 = sorting.sort_timestamp(log2) log2 = sampling.sample(log2) log2 = index_attribute.insert_trace_index_as_event_attribute(log2) petri_exporter.apply(net1, marking1, os.path.join(OUTPUT_DATA_DIR, "running-example.pnml")) os.remove(os.path.join(OUTPUT_DATA_DIR, "running-example.pnml")) self.assertEqual(len(net1.places), len(net2.places)) final_marking = petri_net.obj.Marking() for p in net1.places: if not p.out_arcs: final_marking[p] = 1 aligned_traces = token_replay.apply(log1, net1, marking1, final_marking) del aligned_traces def test_applyImdfToCSV(self): # to avoid static method warnings in tests, # that by construction of the unittest package have to be expressed in such way self.dummy_variable = "dummy_value" # calculate and compare Petri nets obtained on the same log to verify that instances # are working correctly log1, net1, marking1, fmarking1 = self.obtain_petri_net_through_im( os.path.join(INPUT_DATA_DIR, "running-example.csv")) log2, net2, marking2, fmarking2 = self.obtain_petri_net_through_im( os.path.join(INPUT_DATA_DIR, "running-example.csv")) log1 = sorting.sort_timestamp(log1) log1 = sampling.sample(log1) log1 = index_attribute.insert_trace_index_as_event_attribute(log1) log2 = sorting.sort_timestamp(log2) log2 = sampling.sample(log2) log2 = index_attribute.insert_trace_index_as_event_attribute(log2) petri_exporter.apply(net1, marking1, os.path.join(OUTPUT_DATA_DIR, "running-example.pnml")) os.remove(os.path.join(OUTPUT_DATA_DIR, "running-example.pnml")) self.assertEqual(len(net1.places), len(net2.places)) final_marking = petri_net.obj.Marking() for p in net1.places: if not p.out_arcs: final_marking[p] = 1 aligned_traces = token_replay.apply(log1, net1, marking1, final_marking) del aligned_traces def test_imdfVisualizationFromXES(self): # to avoid static method warnings in tests, # that by construction of the unittest package have to be expressed in such way self.dummy_variable = "dummy_value" log, net, marking, fmarking = self.obtain_petri_net_through_im( os.path.join(INPUT_DATA_DIR, "running-example.xes")) log = sorting.sort_timestamp(log) log = sampling.sample(log) log = index_attribute.insert_trace_index_as_event_attribute(log) petri_exporter.apply(net, marking, os.path.join(OUTPUT_DATA_DIR, "running-example.pnml")) os.remove(os.path.join(OUTPUT_DATA_DIR, "running-example.pnml")) gviz = pn_viz.graphviz_visualization(net) final_marking = petri_net.obj.Marking() for p in net.places: if not p.out_arcs: final_marking[p] = 1 aligned_traces = token_replay.apply(log, net, marking, final_marking) del gviz del aligned_traces def test_inductive_miner_new_log(self): import pm4py log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=True) tree = pm4py.discover_process_tree_inductive(log, noise_threshold=0.2) def test_inductive_miner_new_df(self): import pm4py log = pm4py.read_xes("input_data/running-example.xes") tree = pm4py.discover_process_tree_inductive(log, noise_threshold=0.2) def test_inductive_miner_new_log_dfg(self): import pm4py from pm4py.objects.dfg.obj import DFG log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=True) dfg, sa, ea = pm4py.discover_dfg(log) typed_dfg = DFG(dfg, sa, ea) tree = pm4py.discover_process_tree_inductive(typed_dfg, noise_threshold=0.2) def test_inductive_miner_new_df_dfg(self): import pm4py log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=False) typed_dfg = pm4py.discover_dfg_typed(log) tree = pm4py.discover_process_tree_inductive(typed_dfg, noise_threshold=0.2) def test_inductive_miner_new_log_variants(self): import pm4py from pm4py.util.compression.dtypes import UVCL from pm4py.algo.discovery.inductive.variants.imf import IMFUVCL from pm4py.algo.discovery.inductive.dtypes.im_ds import IMDataStructureUVCL log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=True) variants = pm4py.get_variants(log) uvcl = UVCL() for var, occ in variants.items(): uvcl[var] = len(occ) parameters = {"noise_threshold": 0.2} imfuvcl = IMFUVCL(parameters) tree = imfuvcl.apply(IMDataStructureUVCL(uvcl), parameters=parameters) def test_inductive_miner_new_df_variants(self): import pm4py from pm4py.util.compression.dtypes import UVCL from pm4py.algo.discovery.inductive.variants.imf import IMFUVCL from pm4py.algo.discovery.inductive.dtypes.im_ds import IMDataStructureUVCL log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=True) variants = pm4py.get_variants(log) uvcl = UVCL() for var, occ in variants.items(): uvcl[var] = len(occ) parameters = {"noise_threshold": 0.2} imfuvcl = IMFUVCL(parameters) tree = imfuvcl.apply(IMDataStructureUVCL(uvcl), parameters=parameters) if __name__ == "__main__": unittest.main()