import os import unittest from pm4py.algo.conformance.alignments.petri_net import algorithm as align_alg from pm4py.algo.conformance.tokenreplay import algorithm as tr_alg from pm4py.algo.discovery.alpha import algorithm as alpha_miner from pm4py.algo.discovery.dfg import algorithm as dfg_mining from pm4py.algo.discovery.heuristics import algorithm as heuristics_miner from pm4py.algo.discovery.inductive import algorithm as inductive_miner from pm4py.algo.discovery.transition_system import algorithm as ts_disc from pm4py.algo.evaluation import algorithm as eval_alg from pm4py.algo.evaluation.generalization import algorithm as generalization from pm4py.algo.evaluation.precision import algorithm as precision_evaluator from pm4py.algo.evaluation.replay_fitness import algorithm as rp_fit from pm4py.algo.evaluation.simplicity import algorithm as simplicity from pm4py.objects.conversion.log import converter as log_conversion from pm4py.objects.log.exporter.xes import exporter as xes_exporter from pm4py.objects.log.importer.xes import importer as xes_importer from pm4py.objects.log.util import dataframe_utils from pm4py.util import constants, pandas_utils from pm4py.objects.conversion.process_tree import converter as process_tree_converter class MainFactoriesTest(unittest.TestCase): def test_nonstandard_exporter(self): log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) xes_exporter.apply(log, os.path.join("test_output_data", "running-example.xes"), variant=xes_exporter.Variants.LINE_BY_LINE) os.remove(os.path.join("test_output_data", "running-example.xes")) def test_alphaminer_log(self): log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) net, im, fm = alpha_miner.apply(log) aligned_traces_tr = tr_alg.apply(log, net, im, fm) aligned_traces_alignments = align_alg.apply(log, net, im, fm) evaluation = eval_alg.apply(log, net, im, fm) fitness = rp_fit.apply(log, net, im, fm) precision = precision_evaluator.apply(log, net, im, fm) gen = generalization.apply(log, net, im, fm) sim = simplicity.apply(net) def test_memory_efficient_iterparse(self): log = xes_importer.apply(os.path.join("input_data", "running-example.xes"), variant=xes_importer.Variants.ITERPARSE_MEM_COMPRESSED) def test_alphaminer_stream(self): df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM) net, im, fm = alpha_miner.apply(stream) aligned_traces_tr = tr_alg.apply(stream, net, im, fm) aligned_traces_alignments = align_alg.apply(stream, net, im, fm) evaluation = eval_alg.apply(stream, net, im, fm) fitness = rp_fit.apply(stream, net, im, fm) precision = precision_evaluator.apply(stream, net, im, fm) gen = generalization.apply(stream, net, im, fm) sim = simplicity.apply(net) def test_alphaminer_df(self): log = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) log = dataframe_utils.convert_timestamp_columns_in_df(log, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) net, im, fm = alpha_miner.apply(log) aligned_traces_tr = tr_alg.apply(log, net, im, fm) aligned_traces_alignments = align_alg.apply(log, net, im, fm) evaluation = eval_alg.apply(log, net, im, fm) fitness = rp_fit.apply(log, net, im, fm) precision = precision_evaluator.apply(log, net, im, fm) gen = generalization.apply(log, net, im, fm) sim = simplicity.apply(net) def test_inductiveminer_log(self): log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) process_tree = inductive_miner.apply(log) net, im, fm = process_tree_converter.apply(process_tree) aligned_traces_tr = tr_alg.apply(log, net, im, fm) aligned_traces_alignments = align_alg.apply(log, net, im, fm) evaluation = eval_alg.apply(log, net, im, fm) fitness = rp_fit.apply(log, net, im, fm) precision = precision_evaluator.apply(log, net, im, fm) gen = generalization.apply(log, net, im, fm) sim = simplicity.apply(net) def test_inductiveminer_df(self): log = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) log = dataframe_utils.convert_timestamp_columns_in_df(log, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) process_tree = inductive_miner.apply(log) net, im, fm = process_tree_converter.apply(process_tree) aligned_traces_tr = tr_alg.apply(log, net, im, fm) aligned_traces_alignments = align_alg.apply(log, net, im, fm) evaluation = eval_alg.apply(log, net, im, fm) fitness = rp_fit.apply(log, net, im, fm) precision = precision_evaluator.apply(log, net, im, fm) gen = generalization.apply(log, net, im, fm) sim = simplicity.apply(net) def test_heu_log(self): log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) net, im, fm = heuristics_miner.apply(log) aligned_traces_tr = tr_alg.apply(log, net, im, fm) aligned_traces_alignments = align_alg.apply(log, net, im, fm) evaluation = eval_alg.apply(log, net, im, fm) fitness = rp_fit.apply(log, net, im, fm) precision = precision_evaluator.apply(log, net, im, fm) gen = generalization.apply(log, net, im, fm) sim = simplicity.apply(net) def test_heu_stream(self): df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM) net, im, fm = heuristics_miner.apply(stream) aligned_traces_tr = tr_alg.apply(stream, net, im, fm) aligned_traces_alignments = align_alg.apply(stream, net, im, fm) evaluation = eval_alg.apply(stream, net, im, fm) fitness = rp_fit.apply(stream, net, im, fm) precision = precision_evaluator.apply(stream, net, im, fm) gen = generalization.apply(stream, net, im, fm) sim = simplicity.apply(net) def test_heu_df(self): log = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) log = dataframe_utils.convert_timestamp_columns_in_df(log, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) net, im, fm = heuristics_miner.apply(log) aligned_traces_tr = tr_alg.apply(log, net, im, fm) aligned_traces_alignments = align_alg.apply(log, net, im, fm) evaluation = eval_alg.apply(log, net, im, fm) fitness = rp_fit.apply(log, net, im, fm) precision = precision_evaluator.apply(log, net, im, fm) gen = generalization.apply(log, net, im, fm) sim = simplicity.apply(net) def test_dfg_log(self): log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) dfg = dfg_mining.apply(log) def test_dfg_stream(self): df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM) dfg = dfg_mining.apply(stream) def test_dfg_df(self): df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) dfg = dfg_mining.apply(df) def test_ts_log(self): log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) ts = ts_disc.apply(log) def test_ts_stream(self): df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM) ts = ts_disc.apply(stream) def test_ts_df(self): df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) ts = ts_disc.apply(df) def test_csvimp_xesexp(self): df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) log0 = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM) log = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_LOG) stream = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_STREAM) df = log_conversion.apply(log0, variant=log_conversion.TO_DATA_FRAME) xes_exporter.apply(log, "ru.xes") xes_exporter.apply(stream, "ru.xes") xes_exporter.apply(df, "ru.xes") os.remove('ru.xes') def test_xesimp_xesexp(self): log0 = xes_importer.apply(os.path.join("input_data", "running-example.xes")) log = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_LOG) stream = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_STREAM) df = log_conversion.apply(log0, variant=log_conversion.TO_DATA_FRAME) xes_exporter.apply(log, "ru.xes") xes_exporter.apply(stream, "ru.xes") xes_exporter.apply(df, "ru.xes") os.remove('ru.xes') def test_pdimp_xesexp(self): log0 = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) log0 = dataframe_utils.convert_timestamp_columns_in_df(log0, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) log = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_LOG) stream = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_STREAM) df = log_conversion.apply(log0, variant=log_conversion.TO_DATA_FRAME) xes_exporter.apply(log, "ru.xes") xes_exporter.apply(stream, "ru.xes") xes_exporter.apply(df, "ru.xes") os.remove('ru.xes') if __name__ == "__main__": unittest.main()