import pm4py import os from pm4py.util import constants, pandas_utils import importlib.util import unittest class SimplifiedInterface2Test(unittest.TestCase): def test_import_ocel_sqlite_1(self): ocel = pm4py.read_ocel("input_data/ocel/newocel.sqlite") def test_import_ocel_sqlite_2(self): ocel = pm4py.read_ocel_sqlite("input_data/ocel/newocel.sqlite") def test_export_ocel_sqlite(self): ocel = pm4py.read_ocel("input_data/ocel/newocel.jsonocel") pm4py.write_ocel(ocel, "test_output_data/newocel2.sqlite") os.remove("test_output_data/newocel2.sqlite") def test_reduce_invisibles(self): net, im, fm = pm4py.read_pnml("input_data/running-example.pnml") pm4py.reduce_petri_net_invisibles(net) def test_reduce_implicit_places(self): net, im, fm = pm4py.read_pnml("input_data/running-example.pnml") pm4py.reduce_petri_net_implicit_places(net, im, fm) def test_language_df(self): for legacy_obj in [True, False]: log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj) pm4py.get_stochastic_language(log) def test_language_log(self): log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=True) pm4py.get_stochastic_language(log) def test_language_model(self): net, im, fm = pm4py.read_pnml("input_data/running-example.pnml") pm4py.get_stochastic_language(net, im, fm) def test_conversion_df_to_nx(self): for legacy_obj in [True, False]: log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj) pm4py.convert_log_to_networkx(log) def test_conversion_log_to_nx(self): log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=True) pm4py.convert_log_to_networkx(log) def test_conversion_ocel_to_nx(self): ocel = pm4py.read_ocel("input_data/ocel/example_log.jsonocel") pm4py.convert_ocel_to_networkx(ocel) def test_conversion_df_to_ocel(self): for legacy_obj in [True, False]: log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj) pm4py.convert_log_to_ocel(log) def test_conversion_log_to_ocel(self): log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=True) pm4py.convert_log_to_ocel(log) def test_conversion_ocelcsv_to_ocel(self): dataframe = pandas_utils.read_csv("input_data/ocel/example_log.csv") pm4py.convert_log_to_ocel(dataframe, activity_column="ocel:activity", timestamp_column="ocel:timestamp") def test_conversion_petri_to_nx(self): net, im, fm = pm4py.read_pnml("input_data/running-example.pnml") nx_digraph = pm4py.convert_petri_net_to_networkx(net, im, fm) def test_stochastic_language(self): if importlib.util.find_spec("pyemd"): log1 = pm4py.read_xes("input_data/running-example.xes") log2 = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=True) lang1 = pm4py.get_stochastic_language(log1) lang2 = pm4py.get_stochastic_language(log2) pm4py.compute_emd(lang1, lang2) def test_hybrid_ilp_miner(self): for legacy_obj in [True, False]: log = pm4py.read_xes("input_data/running-example.xes", return_legacy_log_object=legacy_obj) pm4py.discover_petri_net_ilp(log) if __name__ == "__main__": unittest.main()