sheetbot / batch.py
linpershey's picture
major release - add pipeline & batch for difference use cases
07d2942
import os
import sys
import json
import glob
import time
import yaml
import joblib
import argparse
import jinja2
import anthropic
import pandas as pd
from tqdm import tqdm
from pathlib import Path
from loguru import logger
from openai import OpenAI
from dotenv import load_dotenv
import google.generativeai as genai
from google.generativeai.types import HarmCategory, HarmBlockThreshold
from data import get_leads
from utils import parse_json_garbage, compose_query
tqdm.pandas()
try:
logger.remove(0)
logger.add(sys.stderr, level="INFO")
except ValueError:
pass
load_dotenv()
def prepare_batch( crawled_result_path: str, config: dict, output_path: str, topn: int = None):
"""
Argument
--------
crawled_result_path: str
Path to the crawled result file (result from the crawl task)
config: dict
Configuration for the batch job
output_path: str
Path to the output file
Return
------
items: list
Example
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gpt-3.5-turbo-0125", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gpt-3.5-turbo-0125", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
model = model,
response_format = {"type": "json_object"},
temperature = 0,
max_tokens = 4096,
"""
assert os.path.exists(crawled_result_path), f"File not found: {crawled_result_path}"
crawled_results = joblib.load(open(crawled_result_path, "rb"))['crawled_results']
if topn:
crawled_results = crawled_results.head(topn)
jenv = jinja2.Environment()
template = jenv.from_string(config['extraction_prompt'])
system_prompt = template.render( classes = config['classes'], traits = config['traits'])
template = jenv.from_string(config['user_content'])
items = []
for i, d in tqdm(enumerate(crawled_results.itertuples())):
idx = d.index # d[1]
evidence = d.googlemap_results +"\n" + d.search_results
business_id = d.business_id # d[2]
business_name = d.business_name # d[3]
address = d.address # d[7]
ana_res = None
query = compose_query( address, business_name, use_exclude=False)
user_content = template.render( query = query, search_results = evidence)
item = {
"custom_id": str(business_id),
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": config['model'],
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_content}
],
"max_tokens": config['max_tokens'],
"temperature": config['temperature'],
"response_format": {"type": "json_object"},
}
}
items.append( json.dumps(item, ensure_ascii=False))
with open(output_path, "w") as f:
for item in items:
f.write(item + "\n")
def prepare_regularization( extracted_result_path: str, config: dict, output_path: str, topn: int = None):
"""
Argument
--------
extracted_file_path: str
Path to the extracted result file (result from the extraction task)
config: dict
Configuration for the batch job
output_path: str
Path to the output file
topn: int
Number of records to be processed
Return
------
items: list
Example
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gpt-3.5-turbo-0125", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gpt-3.5-turbo-0125", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
model = model,
response_format = {"type": "json_object"},
temperature = 0,
max_tokens = 4096,
"""
assert os.path.exists(extracted_result_path), f"File not found: {extracted_result_path}"
extracted_results = joblib.load(open(extracted_result_path, "rb"))['extracted_results']
if topn:
extracted_results = extracted_results.head(topn)
jenv = jinja2.Environment()
template = jenv.from_string(config['regularization_prompt'])
system_prompt = template.render()
template = jenv.from_string(config['regularization_user_content'])
items = []
for i, d in tqdm(enumerate(extracted_results.itertuples())):
idx = d.index # d[1]
category = d.category
business_id = d.business_id
if pd.isna(category) or len(category)==0:
category = ""
user_content = template.render( category = category)
item = {
"custom_id": str(business_id),
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": config['model'],
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_content}
],
"max_tokens": config['max_tokens'],
"temperature": config['temperature'],
"response_format": {"type": "json_object"},
}
}
items.append( json.dumps(item, ensure_ascii=False))
with open(output_path, "w") as f:
for item in items:
f.write(item + "\n")
def run_batch( input_path: str, job_path: str, jsonl_path: str):
"""
Argument
--------
input_path: str
Path to the prepared batch input file (result from prepare_batch)
job_path: str
Path to the job file (response from creating a batch job)
jsonl_path: str
Path to the output file
extracted_result_path: str
Path to the extracted result file
"""
assert os.path.exists(input_path), f"File not found: {input_path}"
st = time.time()
client = OpenAI( organization = os.getenv('ORGANIZATION_ID'))
batch_input_file = client.files.create(
file=open( input_path, "rb"),
purpose="batch"
)
batch_input_file_id = batch_input_file.id
logger.info(f"batch_input_file_id -> {batch_input_file_id}")
batch_resp = client.batches.create(
input_file_id=batch_input_file_id,
endpoint="/v1/chat/completions",
completion_window="24h",
metadata={
"description": "batch job"
}
)
logger.info(f"batch resp -> {batch_resp}")
try:
with open( job_path, "wb") as f:
joblib.dump(batch_resp, f)
except Exception as e:
logger.error(f"Error -> {e}")
with open("./job.joblib", "wb") as f:
joblib.dump(batch_resp, f)
is_ready = False
while 1:
batch_resp = client.batches.retrieve(batch_resp.id)
if batch_resp.status == 'validating':
logger.info("the input file is being validated before the batch can begin")
elif batch_resp.status == 'failed':
logger.info("the input file has failed the validation process")
break
elif batch_resp.status == 'in_progress':
logger.info("the input file was successfully validated and the batch is currently being ru")
elif batch_resp.status == 'finalizing':
logger.info("the batch has completed and the results are being prepared")
elif batch_resp.status == 'completed':
logger.info("the batch has been completed and the results are ready")
is_ready = True
break
elif batch_resp.status == 'expired':
logger.info("the batch was not able to be completed within the 24-hour time window")
break
elif batch_resp.status == 'cancelling':
logger.info("the batch is being cancelled (may take up to 10 minutes)")
elif batch_resp.status == 'cancelled':
logger.info("the batch was cancelled")
break
else:
raise logger.error("Invalid status")
time.sleep(10)
if is_ready:
output_resp = client.files.content(batch_resp.output_file_id)
llm_results = []
try:
with open(jsonl_path, "w") as f:
for line in output_resp.content.decode('utf-8').split("\n"):
line = line.strip()
if len(line)==0:
break
llm_results.append(line)
f.write(f"{line}\n")
except Exception as e:
logger.error(f"Error -> {e}")
with open("./output.jsonl", "w") as f:
for line in output_resp.content.decode('utf-8').split("\n"):
line = line.strip()
if len(line)==0:
break
llm_results.append(line)
f.write(f"{line}\n")
print( f"Time elapsed: {time.time()-st:.2f} seconds")
def batch2extract( jsonl_path: str, crawled_result_path: str, extracted_result_path: str):
"""
Argument
--------
jsonl_path: str
Path to the batch output file
crawled_result_path: str
Path to the crawled result file (result from the crawl task)
extracted_result_path: str
Path to the extracted result file
"""
assert os.path.exists(jsonl_path), f"File not found: {jsonl_path}"
assert os.path.exists(crawled_result_path), f"File not found: {crawled_result_path}"
crawled_results = joblib.load(open(crawled_result_path, "rb"))
extracted_results = []
empty_indices = []
llm_results = []
for line in open(jsonl_path, "r"):
line = line.strip()
if len(line)==0:
break
llm_results.append(line)
for i,llm_result in enumerate(llm_results):
try:
llm_result = json.loads(llm_result)
business_id = llm_result['custom_id']
llm_result = llm_result['response']['body']['choices'][0]['message']['content']
llm_result = parse_json_garbage(llm_result)
llm_result['business_id'] = business_id
extracted_results.append(llm_result)
except Exception as e:
logger.error(f"Error -> {e}, llm_result -> {llm_result}")
empty_indices.append(i)
extracted_results = pd.DataFrame(extracted_results)
basic_info = []
for i, d in tqdm(enumerate(crawled_results['crawled_results'].itertuples())):
idx = d.index # d[1]
evidence = d.googlemap_results +"\n" + d.search_results
business_id = d.business_id # d[2]
business_name = d.business_name # d[3]
address = d.address # d[7]
# ana_res = None
# query = compose_query( address, business_name, use_exclude=False)
basic_info.append( {
"index": idx,
"business_id": business_id,
"business_name": business_name,
"evidence": evidence,
# ** ext_res
} )
basic_info = pd.DataFrame(basic_info)
extracted_results = basic_info.astype({"business_id": str}).merge(extracted_results, on="business_id", how="inner")
print( f"{ extracted_results.shape[0]} records merged.")
extracted_results = {"extracted_results": extracted_results, "empty_indices": empty_indices}
with open(extracted_result_path, "wb") as f:
joblib.dump(extracted_results, f)
def batch2reg( jsonl_path: str, extracted_result_path: str, regularized_result_path: str):
"""
Argument
--------
jsonl_path: str
Path to the batch output file
extracted_result_path: str
Path to the extracted result file
regularized_result_path: str
Path to the regularization result file
"""
assert os.path.exists(jsonl_path), f"File not found: {jsonl_path}"
assert os.path.exists(extracted_result_path), f"File not found: {extracted_result_path}"
extracted_results = joblib.load(open(extracted_result_path, "rb"))['extracted_results']
llm_results, regularized_results, empty_indices = [], [], []
for line in open(jsonl_path, "r"):
line = line.strip()
if len(line)==0:
break
llm_results.append(line)
for i,llm_result in enumerate(llm_results):
try:
llm_result = json.loads(llm_result)
business_id = llm_result['custom_id']
llm_result = llm_result['response']['body']['choices'][0]['message']['content']
llm_result = parse_json_garbage(llm_result)
llm_result['business_id'] = business_id
regularized_results.append(llm_result)
except Exception as e:
logger.error(f"Error -> {e}, llm_result -> {llm_result}")
empty_indices.append(i)
regularized_results = pd.DataFrame(regularized_results)
basic_info = []
for i, d in tqdm(enumerate(extracted_results.itertuples())):
idx = d.index # d[1]
# evidence = d.googlemap_results +"\n" + d.search_results
evidence = d.evidence
business_id = d.business_id # d[2]
business_name = d.business_name # d[3]
# address = d.address # d[7]
# ana_res = None
# query = compose_query( address, business_name, use_exclude=False)
basic_info.append( {
"index": idx,
"business_id": business_id,
"business_name": business_name,
"evidence": evidence,
# ** ext_res
} )
basic_info = pd.DataFrame(basic_info)
regularized_results = basic_info.astype({"business_id": str}).merge(regularized_results, on="business_id", how="inner")
print( f"{ regularized_results.shape[0]} records merged.")
regularized_results = {"regularized_results": regularized_results, "empty_indices": empty_indices}
with open(regularized_result_path, "wb") as f:
joblib.dump(regularized_results, f)
def postprocess_result( config: dict, regularized_result_path: str, postprocessed_result_path, category_hierarchy: dict, column_name: str = 'category') -> pd.DataFrame:
"""
Argument
config: dict
regularized_results_path: str
analysis_result: `evidence`, `result`
postprocessed_results_path
Return
"""
assert os.path.exists(regularized_result_path), f"File not found: {regularized_result_path}"
regularized_results = joblib.load(open(regularized_result_path, "rb"))['regularized_results']
if True:
# if not os.path.exists(postprocessed_result_path):
postprocessed_results = regularized_results.copy()
postprocessed_results.loc[ :, "category"] = postprocessed_results[column_name].progress_apply(lambda x: "" if x not in category_hierarchy else x)
postprocessed_results['supercategory'] = postprocessed_results[column_name].progress_apply(lambda x: category_hierarchy.get(x, ''))
# with open( postprocessed_results_path, "wb") as f:
# joblib.dump( postprocessed_results, f)
postprocessed_results.to_csv( postprocessed_result_path, index=False)
else:
# with open( postprocessed_results_path, "rb") as f:
# postprocessed_results = joblib.load(f)
postprocessed_results = pd.read_csv( postprocessed_result_path)
return postprocessed_results
def combine_postprocessed_results( config: dict, input_path: str, postprocessed_result_path: str, reference_path: str, output_path: str):
"""
Argument
config: dict
input_path: str
postprocessed_result_path: str
reference_path: str
output_path: str
"""
file_pattern = str(Path(input_path).joinpath( postprocessed_result_path, "postprocessed_results.csv"))
logger.info(f"file_pattern -> {file_pattern}")
file_paths = list(glob.glob(file_pattern))
assert len(file_paths)>0, f"File not found: {postprocessed_result_path}"
postprocessed_results = pd.concat([pd.read_csv(file_path, dtype={"business_id": str}) for file_path in file_paths], axis=0)
reference_results = get_leads( reference_path)
# reference_results = reference_results.rename(config['column_mapping'], axis=1)
postprocessed_results = reference_results.merge( postprocessed_results, left_on = "統一編號", right_on="business_id", how="left")
postprocessed_results.to_csv( output_path, index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument( "-c", "--config", type=str, default='config/config.yml', help="Path to the configuration file")
parser.add_argument( "-t", "--task", type=str, default='prepare_batch', choices=['prepare_batch', 'prepare_regularization', 'run_batch', 'batch2extract', 'batch2reg', 'postprocess', 'combine'])
parser.add_argument( "-i", "--input_path", type=str, default='', )
parser.add_argument( "-o", "--output_path", type=str, default='', )
parser.add_argument( "-b", "--batch_path", type=str, default='', )
parser.add_argument( "-j", "--job_path", type=str, default='', )
parser.add_argument( "-jp", "--jsonl_path", type=str, default='', )
parser.add_argument( "-crp", "--crawled_result_path", type=str, default='', )
parser.add_argument( "-erp", "--extracted_result_path", type=str, default='', )
parser.add_argument( "-rrp", "--regularized_result_path", type=str, default='', )
parser.add_argument( "-prp", "--postprocessed_result_path", type=str, default='', )
parser.add_argument( "-rp", "--reference_path", type=str, default='', )
parser.add_argument( "-topn", "--topn", type=int, default=None )
args = parser.parse_args()
# classes = ['小吃店', '日式料理(含居酒屋,串燒)', '火(鍋/爐)', '東南亞料理(不含日韓)', '海鮮熱炒', '特色餐廳(含雞、鵝、牛、羊肉)', '傳統餐廳', '燒烤', '韓式料理(含火鍋,烤肉)', '西餐廳(含美式,義式,墨式)', ]
# backup_classes = [ '中式', '西式']
assert os.path.exists(args.config), f"File not found: {args.config}"
config = yaml.safe_load(open(args.config, "r").read())
if args.task == 'prepare_batch':
prepare_batch( crawled_result_path = args.crawled_result_path, config = config, output_path = args.output_path, topn = args.topn)
elif args.task == 'run_batch':
run_batch( input_path = args.input_path, job_path = args.job_path, jsonl_path = args.jsonl_path)
elif args.task == 'prepare_regularization':
prepare_regularization( extracted_result_path = args.extracted_result_path, config = config, output_path = args.output_path, topn = args.topn)
elif args.task == 'batch2extract':
batch2extract(
jsonl_path = args.jsonl_path,
crawled_result_path = args.crawled_result_path,
extracted_result_path = args.extracted_result_path
)
elif args.task == 'batch2reg':
batch2reg(
jsonl_path = args.jsonl_path,
extracted_result_path = args.extracted_result_path,
regularized_result_path = args.regularized_result_path
)
elif args.task == 'postprocess':
postprocess_result(
config = config,
regularized_result_path = args.regularized_result_path,
postprocessed_result_path = args.postprocessed_result_path,
category_hierarchy = config['category2supercategory'],
column_name = 'category'
)
elif args.task == 'combine':
combine_postprocessed_results(
config,
args.input_path,
args.postprocessed_result_path,
args.reference_path,
args.output_path
)
else:
raise Exception("Invalid task")