Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import time | |
import json | |
import joblib | |
import math | |
import itertools | |
import argparse | |
import multiprocessing as mp | |
from typing import List | |
from pathlib import Path | |
import jinja2 | |
import requests | |
import pandas as pd | |
from dotenv import load_dotenv | |
from serpapi import GoogleSearch | |
import tiktoken | |
from openai import OpenAI | |
from tqdm import tqdm | |
from loguru import logger | |
from model import llm | |
from data import get_leads, format_search_results | |
from utils import (parse_json_garbage, split_dataframe, merge_results, | |
combine_results, split_dict, format_df, | |
clean_quotes, compose_query) | |
from batch import postprocess_result | |
load_dotenv() | |
ORGANIZATION_ID = os.getenv('OPENAI_ORGANIZATION_ID') | |
SERP_API_KEY = os.getenv('SERP_APIKEY') | |
SERPER_API_KEY = os.getenv('SERPER_API_KEY') | |
try: | |
logger.remove(0) | |
logger.add(sys.stderr, level="INFO") | |
except ValueError: | |
pass | |
def get_serp( query: str, google_domain: str, gl: str, lr: str, top_k: int = 20, hl: str = "zh-tw", location: str = 'Taiwan', provider: str = 'serp') -> dict: | |
""" | |
""" | |
results = [] | |
if provider == 'serp': | |
search = GoogleSearch({ | |
"q": query, | |
'google_domain': google_domain, | |
'gl': gl, | |
'lr': lr, | |
"api_key": SERP_API_KEY | |
}) | |
result = search.get_dict() | |
# print(result['organic_results'][0]) | |
# return result['organic_results'][0] | |
return result | |
elif provider == 'serper': | |
try: | |
payload = json.dumps({ | |
"q": query, | |
"location": "Taiwan", | |
"gl": gl, | |
"hl": hl, | |
"num": top_k, | |
"autocorrect": False | |
}) | |
response = requests.request( | |
"POST", | |
"https://google.serper.dev/search", | |
headers = { 'X-API-KEY': SERPER_API_KEY, 'Content-Type': 'application/json'}, | |
data = payload | |
) | |
except Exception as e: | |
logger.error() | |
raise Exception(f"SERPER error -> {e}, query -> {query}") | |
result = response.json() | |
if 'searchParamters' in result: | |
result['search_parameters'] = result.pop('searchParamters') | |
if 'knowledgeGraph' in result: | |
result['knowledge_graph'] = result.pop('knowledgeGraph') | |
if 'organic' in result: | |
result['organic_results'] = result.pop('organic') | |
return result | |
else: | |
raise Exception(f"Unknown provider: {provider}") | |
def get_condensed_result(result: dict): | |
""" | |
Argument | |
result | |
Return | |
condensed_result: | |
Example: | |
""" | |
filtered_results = [ | |
{"title": r.get('title',""), 'snippet': r.get('snippet',"")} for r in result['organic_results'] | |
] | |
condensed_result = json.dumps(filtered_results, ensure_ascii=False) | |
# print( condensed_results ) | |
return condensed_result | |
def get_googlemap_results(result: dict): | |
"""Get a store's google map results (in knowledge_graph) | |
Argument | |
result: dict | |
- 'knowledge_graph' | |
- 'title', 'thumbnail', 'type', 'entity_type', 'kgmid', 'knowledge_graph_search_link', 'serpapi_knowledge_graph_search_link', 'tabs', 'place_id', 'directions', 'local_map', 'rating', 'review_count', '服務項目', '地址', '地址_links', 'raw_hours', 'hours', '電話號碼', '電話號碼_links', 'popular_times', 'user_reviews', 'reviews_from_the_web', 'unclaimed_listing', '個人資料', '其他人也搜尋了以下項目', '其他人也搜尋了以下項目_link', '其他人也搜尋了以下項目_stick' | |
Return | |
googlemap_result: str | |
""" | |
googlemap_result = "## Google map results\n" | |
if 'knowledge_graph' in result: | |
if 'user_reviews' in result['knowledge_graph']: | |
user_review = "\t".join([ _.get('summary', '') for _ in result['knowledge_graph']['user_reviews']]) | |
store_name = result['knowledge_graph']['title'] | |
googlemap_result += ( f"### store name: {store_name}\n") | |
googlemap_result += ( f"\t- 顧客評價: {user_review}\n") | |
if '其他人也搜尋了以下項目' in result['knowledge_graph']: | |
similar_store_types = "\t".join([ str(_.get('extensions', '')) for _ in result['knowledge_graph']['其他人也搜尋了以下項目']]) | |
googlemap_result += ( f"\t- 類似店面類型: {similar_store_types}\n") | |
if '暫停營業' in result['knowledge_graph']: | |
store_status = '暫停營業' if result['knowledge_graph']['暫停營業'] else '營業中' | |
googlemap_result += ( f"\t- 營業狀態: {store_status}\n") | |
if '電話號碼' in result['knowledge_graph']: | |
phone_number = result['knowledge_graph']['電話號碼'] | |
googlemap_result += ( f"\t- 電話號碼: {phone_number}\n") | |
if 'type' in result['knowledge_graph']: | |
store_type = result['knowledge_graph']['type'] | |
googlemap_result += ( f"\t- 餐飲屬性: {store_type}\n") | |
else: | |
googlemap_result += ("empty\n") | |
return clean_quotes(googlemap_result) | |
def get_organic_result(result: dict) -> str: | |
"""Get a store's organic search results | |
Argument | |
result: str | |
Return | |
organic_result: str | |
""" | |
organic_result = "## Search results\n" | |
# filtered_results = [ | |
# {"title": r.get('title',""), 'snippet': r.get('snippet',"")} for r in result['organic_results'] | |
# ] | |
for r in result['organic_results']: | |
organic_result += ( f"### {r.get('title','')}: {r.get('snippet','')}\n") | |
return clean_quotes(organic_result) | |
def compose_classification( user_content, config: dict) -> str: | |
""" | |
Argument | |
user_content: str | |
config: dict | |
classes: list | |
backup_classes: list | |
provider: e.g. 'google', 'openai' | |
model: e.g. 'gemini-1.5-flash', 'gpt-3.5-turbo-0125', 'gpt-4-0125-preview' | |
Return | |
response: str | |
Example | |
system_prompt = | |
As a helpful and rigorous retail analyst, given the provided information about a store, | |
your task is two-fold. First, classify provided evidence below into the mostly relevant category from the following: {classes}. | |
Second, if no relevant information has been found, classify the evidence into the mostly relevant supercategory from the following: {backup_classes}. | |
It's very important to omit unrelated piece of evidence and don't make up any assumption. | |
Please think step by step, and must output in json format. An example output json is like {{"category": "..."}} | |
If no relevant piece of information can ever be found at all, simply output json with empty string "". | |
I'll tip you and guarantee a place in heaven you do a great job completely according to my instruction. | |
""" | |
if isinstance(classes, list): | |
classes = ", ".join([ f"`{x}`" for x in classes]) | |
elif isinstance(classes, str): | |
pass | |
else: | |
raise Exception(f"Incorrect classes type: {type(classes)}") | |
template = jinja2.Environment().from_string(config['classification_prompt']) | |
system_prompt = template.render( classes=config['classes'], backup_classes=config['backup_classes']) | |
response = llm( | |
provider = config['provider'], | |
model = config['model'], | |
system_prompt = system_prompt, | |
user_content = user_content, | |
) | |
return response | |
def classify_results( | |
analysis_results: pd.DataFrame, | |
config: dict, | |
input_column: str = 'evidence', | |
output_column: str = 'classified_category', | |
): | |
"""Classify the results | |
Argument | |
analysis_results: dataframe | |
config: dict | |
classes: list, | |
backup_classes: list, | |
provider: str, | |
model: str, | |
input_column: str | |
output_column: str | |
Return | |
analysis_results: dataframe | |
""" | |
classified_results = analysis_results.copy() | |
labels, empty_indices = [], [] | |
for idx, evidence in zip( analysis_results['index'], analysis_results[input_column]): | |
try: | |
user_content = f'''`evidence`: `{evidence}`''' | |
pred_cls = compose_classification( user_content, config) | |
label = parse_json_garbage(pred_cls)['category'] | |
labels.append(label) | |
except Exception as e: | |
logger.error(f"# CLASSIFICATION error: e -> {e}, user_content -> {user_content}, evidence: {evidence}") | |
labels.append("") | |
empty_indices.append(idx) | |
classified_results[output_column] = labels | |
return { | |
"classified_results": classified_results, | |
"empty_indices": empty_indices | |
} | |
def classify_results_mp( extracted_results: pd.DataFrame, classified_file_path: str, config: dict, n_processes: int = 4): | |
""" | |
Argument | |
extracted_results: | |
classified_file_path: | |
config: dict | |
classes: list | |
backup_classes: list | |
provider: str | |
model: str, | |
n_processes: int | |
Return | |
classified_results: dataframe | |
Reference | |
200 records, 4 processes, 122.4695s | |
""" | |
st = time.time() | |
# classified_file_path = "data/classified_result.joblib" | |
if not os.path.exists(classified_file_path): | |
split_data = split_dataframe(extracted_results) | |
with mp.Pool(args.n_processes) as pool: | |
classified_results = pool.starmap( | |
classify_results, | |
[ ( | |
d, config, 'evidence', 'classified_category' | |
) for d in split_data] | |
) | |
classified_results = merge_results( classified_results, dataframe_columns=['classified_results'], list_columns=['empty_indices']) | |
try: | |
with open( classified_file_path, "wb") as f: | |
joblib.dump( classified_results, f) | |
except FileNotFoundError as e: | |
logger.error(f"# CLASSIFICATION error: e -> {e}") | |
with open( f"./{Path(classified_file_path).name}.joblib", "wb") as f: | |
joblib.dump( classified_results, f) | |
else: | |
with open( classified_file_path, "rb") as f: | |
classified_results = joblib.load(f) | |
print( f"total time: {time.time() - st}") | |
return classified_results | |
def compose_filter( query, search_results, config: dict): | |
"""Filter the search results based on the query (store name and address) | |
Argument | |
query: str | |
search_results: str | |
system_prompt: str | |
config: dict | |
provider: default to be "google" | |
model: default to be "gemini-1.5-flash" | |
Return | |
response: str | |
""" | |
system_prompt = f'''As a helpful and rigorous retail analyst, given the provided query and a list of search results for the query, execute this task step by step. Search results contains a list of search results, where some could be totally irrelevant to our query. | |
Steps: | |
First, use store name and address to identify relevant and irrelevant information from search results. | |
Second, look through the list of search results; keep relevant ones and drop irrelevant ones. | |
Third, filter the results and only output relevant ones. Original numbering must be kept. | |
Output in json format such as {{ "relevant_results": [ "result ...", "result ...", "result ..." ], "irrelevant_results": ["result ..."]}}. It's very important to omit unrelated results. Do not make up any assumption. | |
''' | |
user_content = f"## query: `{query}`\n## search_results: {search_results}" | |
response = llm( | |
provider = config['provider'], | |
model = config['model'], | |
system_prompt = system_prompt, | |
user_content = user_content | |
) | |
return response | |
def filter_results( results: pd.DataFrame, config: dict): | |
"""Filter the results | |
Argument | |
results: dataframe | |
config: dict | |
provider | |
model: | |
Return | |
analysis_results: dataframe | |
""" | |
results = results.copy() | |
relevant_results, empty_indices = [], [] | |
for i, d in tqdm(enumerate(results.itertuples())): | |
idx = d.index # d[1] | |
search_results = d.search_results | |
# evidence = d.googlemap_results +"\n" + d.search_results | |
# business_id = d.business_id # d[2] | |
business_name = d.business_name # d[3] | |
address = d.address # d[7] | |
try: | |
query = compose_query( address, business_name, use_exclude=False) | |
filtered_results = compose_filter( query = query, search_results=search_results, config=config) | |
relevant_result = parse_json_garbage(filtered_results)['relevant_results'] | |
relevant_result = "### 搜尋結果: \n" + "\n".join([ "- " + r for r in relevant_result]) | |
relevant_results.append(relevant_result) | |
except Exception as e: | |
logger.error(f"# FILTER error (add to empty_indices): e -> {e}, query -> {query}, filtered_results: {filtered_results}") | |
relevant_results.append(search_results) | |
empty_indices.append(idx) | |
results.loc[ :, "search_results"] = relevant_results | |
return { | |
"filtered_results": results, | |
"empty_indices": empty_indices | |
} | |
def filter_results_mp( data: pd.DataFrame, filtered_file_path: str, config: dict, n_processes: int = 4): | |
"""Filter results in parallel | |
Argument | |
data: dataframe | |
filtered_file_path: str | |
config: dict | |
provider: str | |
model: str | |
n_processes: int | |
Return | |
filtered_results: dataframe | |
""" | |
st = time.time() | |
# crawl_file_path = "data/crawled_results.joblib" | |
if not os.path.exists(filtered_file_path): | |
split_data = split_dataframe( data ) | |
with mp.Pool(n_processes) as pool: | |
filtered_results = pool.starmap( | |
filter_results, | |
[ (d, config) for d in split_data] | |
) | |
filtered_results = merge_results( filtered_results, dataframe_columns=['filtered_results'], list_columns=['empty_indices']) | |
# with open( filtered_file_path, "wb") as f: | |
# joblib.dump( filtered_results, f) | |
filtered_results['filtered_results'].to_csv( filtered_file_path, index=False) | |
else: | |
# with open( filtered_file_path, "rb") as f: | |
# filtered_results = joblib.load(f) | |
filtered_results = { 'filtered_results': pd.read_csv( filtered_file_path)} | |
logger.debug( f"total time: {time.time() - st}") | |
return filtered_results | |
def crawl_results( data: pd.DataFrame, serp_provider: str = 'serp', google_domain: str = 'google.com.tw', gl: str = 'tw', lr: str = 'lang_zh-TW'): | |
""" | |
Argument | |
data: dataframe | |
google_domain: str | |
gl: str | |
lr: str | |
Return | |
{ | |
`crawled_results`: df | |
`empty_indices`: list | |
} | |
df format: | |
[ | |
{'title': '達米娜魚料理食堂', | |
'snippet': 'Zhenzhen · 台東縣台東市洛陽街204號 · 08 934 1662 · 其他美食 · 外送・提供廁所・免費Wifi · ・休息中・將於20:00 開始營業 · NT$120 · 座位數15 · 現金.'}, | |
... | |
{'title': '台東美食推薦》25間台東市美食小吃/特色餐廳/早餐伴手禮', | |
'snippet': '好漁日鬼頭刀專屬料理MAHI MAHI TODAY如店名所說,是間專賣鬼頭刀料理的餐廳,台灣主要盛產鬼頭刀的地方就位於台東的成功新港漁港,所以推薦大家來台東 ...'}, | |
{'title': '類似的店', 'snippet': "['餐廳']\t['早午餐']\t['餐廳']"}, | |
{'status': '暫停營業'}, | |
{'telephone_number': '08 934 1662'} | |
] | |
Reference | |
200 records, 4 processes, 171.36490321159363 | |
""" | |
# serp_results = [] | |
# condensed_results = [] | |
crawled_results = [] | |
empty_indices = [] | |
for i, d in tqdm(enumerate(data.itertuples())): | |
idx = d[0] | |
address = d[1] | |
business_id = d[2] | |
business_name = d[4] | |
query = compose_query(address, business_name) | |
try: | |
res = get_serp( query, google_domain, gl, lr, provider=serp_provider) | |
# serp_results.append(res) | |
except: | |
logger.warning( f"# SERP error (will add to empty indices): i = {i}, idx = {idx}, query = {query}") | |
empty_indices.append(i) | |
continue | |
try: | |
# cond_res = get_condensed_result(res) | |
googlemap_res = get_googlemap_results(res) | |
search_res = get_organic_result(res) | |
# condensed_results.append(cond_res) | |
except: | |
logger.warning(f"# get googlemap & organic results error (will add to empty indices): i = {i}, idx = {idx}, res = {res}") | |
empty_indices.append(i) | |
continue | |
crawled_results.append( { | |
"index": idx, | |
"business_id": business_id, | |
"business_name": business_name, | |
"serp": res, | |
# "evidence": cond_res, | |
"googlemap_results": googlemap_res, | |
"search_results": search_res, | |
"address": address, | |
} ) | |
crawled_results = pd.DataFrame(crawled_results) | |
return { | |
"crawled_results": crawled_results, | |
"empty_indices": empty_indices | |
} | |
def crawl_results_mp( data: pd.DataFrame, crawl_file_path: str, serp_provider: str, n_processes: int = 4): | |
st = time.time() | |
# crawl_file_path = "data/crawled_results.joblib" | |
if not os.path.exists(crawl_file_path): | |
split_data = split_dataframe( data ) | |
with mp.Pool(n_processes) as pool: | |
crawled_results = pool.starmap( | |
crawl_results, | |
[( d, serp_provider) for d in split_data] | |
) | |
crawled_results = merge_results( crawled_results, dataframe_columns=['crawled_results'], list_columns=['empty_indices']) | |
try: | |
with open( crawl_file_path, "wb") as f: | |
joblib.dump( crawled_results, f) | |
except FileNotFoundError as e: | |
logger.error(f"# CRAWL error: e = {e}") | |
with open( f"./{Path(crawl_file_path).name}.joblib", "wb") as f: | |
joblib.dump( crawled_results, f) | |
else: | |
with open( crawl_file_path, "rb") as f: | |
crawled_results = joblib.load(f) | |
logger.debug( f"total time: {time.time() - st}") | |
return crawled_results | |
def compose_extraction( query, search_results, config: dict): | |
""" | |
Argument | |
query: str | |
search_results: str | |
config: dict | |
system_prompt: str | |
classes: list. e.g. `小吃店`,`日式料理(含居酒屋,串燒)`,`火(鍋/爐)`,`東南亞料理(不含日韓)`,`海鮮熱炒`,`特色餐廳(含雞、鵝、牛、羊肉)`,`釣蝦場`,`傳統餐廳`,`燒烤`,`韓式料理(含火鍋,烤肉)`,`PUB(Live Band)`,`PUB(一般,含Lounge)`,`PUB(電音\舞場)`,`五星級飯店`,`自助KTV(含連鎖,庭園自助)`,`西餐廳(含美式,義式,墨式)`,`咖啡廳(泡沫紅茶)`,`飯店(星級/旅館,不含五星級)`,`運動休閒館(含球類練習場,飛鏢等)`,`西餐廳(餐酒館、酒吧、飛鏢吧、pub、lounge bar)`,`西餐廳(土耳其、漢堡、薯條、法式、歐式、印度)`,`早餐` | |
provider: "openai" | |
model: "gpt-4-0125-preview" or 'gpt-3.5-turbo-0125' | |
Return | |
response: str | |
Example | |
classes = ", ".join([ "`"+x+"`" for x in classes if x!='早餐' ])+ " or " + "`早餐`" | |
traits = "Gathering, Chill, Enjoying Together, Drinking Freely, Winery, Wine Cellar, Wine Storage, Relaxing, Unwinding, Lyrical, Romantic, Pleasant, Stress Relief, Wine and Dine, Light Drinking Gatherings, Birthday Celebrations, Socializing, Parties, Networking, After Work Relaxation with a Drink, Relaxing Places Suitable for Drinking, Every Dish Goes Well with Beer, Shared Dishes, Dining Together, Atmosphere Suitable for Celebratory Drinking, Places Suitable for Light Drinking Gatherings with Friends, Small Shops Suitable for Relaxing and Light Drinking" | |
system_prompt = f''' | |
As a helpful and rigorous retail analyst, given the provided query and a list of search results for the query, your task is to first use store name and address to identify relevant information. | |
After that, from the relevant information, extract `store_name`, `address`, `description`, `category`, `provide_alcohol` and `phone_number` from the found relevant information. | |
Note that `category` can only be {classes}. | |
According to our experience,`provide_alcohol` can be inferred based on whether a store is suitable for scenarios such as {traits}. | |
`description` is a summary of key piece of evidence and reasons that lead you decide `category` and `provide_alcohol` . | |
It's very important to omit unrelated results. Do not make up any assumption. | |
Please think step by step, and output a single json that starts with `{{` and ends with `}}`. An example output json is like {{"store_name": "...", "address": "...", "description": "... products, service or highlights ...", "category": "...", "phone_number": "...", "provide_alcohol": true or false}} | |
If no relevant information has been found, simply output json with empty values. | |
''' | |
""" | |
classes = ", ".join([ "`"+x+"`" for x in config['classes'] if x!='早餐' ])+ " or " + "`早餐`" | |
traits = config['traits'] | |
system_prompt = config['extraction_prompt'] | |
jenv = jinja2.Environment() | |
template = jenv.from_string(system_prompt) | |
system_prompt = template.render( classes=classes, traits=traits) | |
user_content = f"`query`: `{query}`\n`search_results`: {search_results}" | |
response = llm( | |
provider = config['provider'], | |
model = config['model'], | |
system_prompt = system_prompt, | |
user_content = user_content | |
) | |
return response | |
def extract_results( data: pd.DataFrame, config: dict): | |
""" | |
Argument | |
data: a dataframe | |
- "index", "business_id", "business_name", "serp", "googlemap_results", "search_results", "address" | |
# - `evidence`, `result` | |
config: dict | |
classes: list | |
provider: str | |
model: str | |
Return | |
extracted_results: dataframe of `extracted_evidence` | |
""" | |
extracted_results, empty_indices, ext_res = [], [], [] | |
for i, d in tqdm(enumerate(data.itertuples())): | |
idx = d.index # d[1] | |
# evidence = d.evidence | |
# evidence = d.formatted_evidence | |
evidence = d.googlemap_results +"\n" + d.search_results | |
business_id = d.business_id # d[2] | |
business_name = d.business_name # d[3] | |
address = d.address # d[7] | |
ana_res = None | |
query = compose_query( address, business_name, use_exclude=False) | |
try: | |
ext_res = compose_extraction( | |
query = query, | |
search_results = evidence, | |
config = config | |
) | |
ext_res = parse_json_garbage(ext_res) | |
except Exception as e: | |
logger.error(f"# ANALYSIS error (add to empty indices): e = {e}, i = {i}, q = {query}, ext_res = {ext_res}") | |
empty_indices.append(i) | |
continue | |
extracted_results.append( { | |
"index": idx, | |
"business_id": business_id, | |
"business_name": business_name, | |
"evidence": evidence, | |
** ext_res | |
} ) | |
extracted_results = pd.DataFrame(extracted_results) | |
return { | |
"extracted_results": extracted_results, | |
"empty_indices": empty_indices | |
} | |
def extract_results_mp( crawled_results, extracted_file_path, config: dict, n_processes: int = 4): | |
""" | |
Argument | |
crawled_results: dataframe | |
extracted_file_path | |
config: | |
classes: list | |
model: str | |
provider: str | |
Return | |
Reference | |
200 records, 4 processes, 502.26914715766907 | |
""" | |
st = time.time() | |
# args.extracted_file_path = "data/extracted_results.joblib" | |
if not os.path.exists(extracted_file_path): | |
split_data = split_dataframe( crawled_results) | |
with mp.Pool(n_processes) as pool: | |
extracted_results = pool.starmap( extract_results, [ (x, config) for x in split_data]) | |
extracted_results = merge_results( extracted_results, dataframe_columns=['extracted_results'], list_columns=['empty_indices']) | |
try: | |
with open( extracted_file_path, "wb") as f: | |
joblib.dump( extracted_results, f) | |
except FileNotFoundError as e: | |
logger.error(f"# EXTRACT error: e = {e}") | |
with open( f"./{Path(extracted_file_path).name}.joblib", "wb") as f: | |
joblib.dump( extracted_results, f) | |
else: | |
with open( extracted_file_path, "rb") as f: | |
extracted_results = joblib.load(f) | |
logger.info( f"total time: {time.time() - st}") | |
return extracted_results | |
def compose_regularization( category: str, config: dict): | |
""" | |
Argument | |
category: str | |
config: dict | |
provider: str | |
model: str | |
Return | |
response: str | |
""" | |
system_prompt = f""" | |
As a helpful and factual assistant, your task is to classify the provided raw cuisine category into a conformed category. The definition of each conformed category is show below (in the format of `category`: `... definition ...`): | |
- `小吃店`:小吃、擔仔麵、小吃攤、街邊小店、傳統小吃、麵食、麵攤、炒飯、餃子館、鯊魚煙、黑白切、牛肉麵、銅板美食、小點心、簡餐、色小菜、開放空間攤販 | |
- `日式料理(含居酒屋,串燒)`:居酒屋、酒場、水產、清酒、生魚片、壽司、日式啤酒、日式料理、代烤服務、日本餐飲場所、日本傳統食物、日式定食 | |
- `火(鍋/爐)`:麻辣鍋、薑母鴨、鴨味仔、鍋物、湯底、滋補、冬令補、涮涮鍋、個人鍋、冬天圍爐、羊肉爐、鴛鴦鍋、炭火爐、氣火爐、燒酒雞、蒸氣海鮮鍋 | |
- `東南亞料理(不含日韓)`:印尼、越式、泰式、沙嗲、海南雞、河粉、馬來西亞料理、新加坡料理、寮國料理、緬甸料理、南洋風味、印度料理、越南春捲、泰式綠咖哩、異國風情裝潢、滇緬料理 | |
- `海鮮熱炒`:海鮮、現撈、活海鮮、生猛、大排檔、活魚活蝦、生猛海鮮、快炒、海產、台式海鮮、下酒菜 | |
- `特色餐廳(含雞、鵝、牛、羊肉)`:烤鴨、燒鵝、甕仔雞、甕缸雞、桶仔雞、牛雜、蒙古烤肉、鵝肉城、金山鴨肉、生牛肉、全羊宴、活鱉、烤雞店、鵝肉餐廳、溫體牛、現宰羊肉、鹹水鵝、土羊肉 | |
- `傳統餐廳`:江浙、台菜、合菜、桌菜、粵菜、中式、川菜、港式、上海菜、砂鍋魚頭、東北菜、北京烤鴨、一鴨三吃、婚宴、辦桌、老字號、宴會廳、台灣料理 | |
- `燒烤`:燒烤、串燒、串串、烤魚、鮮蚵、炭烤、直火、碳火、和牛、戶外生火、烤肉、路邊燒烤 | |
- `韓式料理(含火鍋,烤肉)`:韓國泡菜、韓式年糕、首爾、燒酒、韓式炸雞、春川辣炒雞、韓式炸醬麵、海鮮煎餅、烤三層肉、烤五花、烤韓牛、醬料和飯、石鍋拌飯、韓式風格、韓式清酒、啤酒、銅盤烤肉、韓流 | |
- `PUB(Live Band)`:音樂餐廳、樂團表演、現場表演、LIVE表演、樂團駐唱、定期表演、有舞台場地、樂隊、專人駐唱 | |
- `PUB(一般,含Lounge)`:酒吧、bar、lounge、飛鏢、調酒、運動酒吧、音樂酒吧、沙發聊天、女公關、互動調酒師、公關服務 | |
- `PUB(電音\舞場)`:夜店、舞池電音、藝人、包廂低消制、電子音樂表演、DJ、派對狂歡 | |
- `五星級飯店`:高級飯店、奢華酒店、連鎖五星級飯店、國際集團飯店、米其林飯店、高檔住宿 | |
- `自助KTV(含連鎖,庭園自助)`:卡拉OK、唱歌、歌坊、歡唱吧、自行點歌、自助唱歌、唱歌包廂、慶生聯誼包廂 | |
- `西餐廳(含美式,義式,墨式)`:牛排、餐酒、歐式、義式、西餐、義大利麵、凱薩沙拉、紅酒、白酒、調酒、墨西哥式料理、阿根廷式料理、漢堡、比薩 | |
- `咖啡廳(泡沫紅茶)`:泡沫紅茶店、咖啡店、café、coffee、輕食、軟性飲料、簡餐、茶街 | |
- `飯店(星級/旅館,不含五星級)`:飯店、酒店、商務旅館、平價住宿 | |
- `運動休閒館(含球類練習場,飛鏢等)`:撞球、高爾夫、運動、保齡球、娛樂、高爾夫練習場、大魯閣棒球場、籃球、羽毛球、PHOENIX鳳凰、羽球館、看球賽 | |
- `釣蝦場`:釣蝦、蝦寶、投幣卡拉OK、釣竿和餌料、蝦子現場烹煮食用、泰國蝦、現烤蝦子、包廂唱歌、現釣現烤、自備或租用釣竿。 | |
Note that you must choose from the above categories. Other ones are strongly prohibited. | |
Output in json format such as {{"category": "..."}}. | |
""" | |
user_content = category | |
response = llm( | |
provider = config['provider'], | |
model = config['model'], | |
system_prompt = system_prompt, | |
user_content = user_content | |
) | |
return response | |
def regularize_results( results: pd.DataFrame, provider, model): | |
"""Regularize the categories | |
Argument | |
results: dataframe | |
provider: str | |
model: str | |
Return | |
a dict of | |
- regularized_results: dataframe | |
- empty_indices: list | |
""" | |
results = results.copy() | |
regular_categories, empty_indices = [], [] | |
for i, d in tqdm(enumerate(results.itertuples())): | |
idx = d.index # d[1] | |
category = d.category | |
if pd.isna(category) or len(category)==0: | |
regular_categories.append("") | |
continue | |
try: | |
query = category | |
regularized_result = compose_regularization( category, provider=provider, model=model) | |
regular_category = parse_json_garbage(regularized_result)['category'] | |
regular_categories.append(regular_category) | |
except Exception as e: | |
logger.error(f"# REGULARIZATION error (add to empty_indices): e -> {e}, query -> {query}, category: {category}") | |
regular_categories.append(category) | |
empty_indices.append(idx) | |
results.loc[ :, "category"] = regular_categories | |
return { | |
"regularized_results": results, | |
"empty_indices": empty_indices | |
} | |
def regularize_results_mp( data: pd.DataFrame, regularized_file_path, provider, model): | |
"""Regularize categories in parallel | |
Argument | |
data: dataframe | |
regularized_file_path: str | |
provider: str | |
model: str | |
Return | |
regularized_results: dataframe | |
""" | |
st = time.time() | |
if not os.path.exists(regularized_file_path): | |
split_data = split_dataframe( data ) | |
with mp.Pool(n_processes) as pool: | |
regularized_results = pool.starmap( | |
regularize_results, | |
[ ( | |
d, provider, model | |
) for d in split_data] | |
) | |
regularized_results = merge_results( regularized_results, dataframe_columns=['regularized_results'], list_columns=['empty_indices']) | |
# with open( filtered_file_path, "wb") as f: | |
# joblib.dump( filtered_results, f) | |
regularized_results['regularized_results'].to_csv( regularized_file_path, index=False) | |
else: | |
# with open( filtered_file_path, "rb") as f: | |
# filtered_results = joblib.load(f) | |
regularized_results = { 'regularized_results': pd.read_csv( regularized_file_path)} | |
logger.debug( f"total time: {time.time() - st}") | |
return regularized_results | |