Spaces:
Runtime error
Runtime error
Commit
·
60274d1
1
Parent(s):
4a96867
add sonnet support
Browse files
app.py
CHANGED
@@ -75,13 +75,14 @@ def do( business_id, business_name, address):
|
|
75 |
extracted_results = extract_results( crawled_results, classes=classes)
|
76 |
# logger.error(extracted_results['extracted_results'].columns)
|
77 |
extracted_results = extracted_results['extracted_results'][ [ 'business_id', 'business_name', 'address', 'category', 'evidence', 'phone_number', 'description', 'store_name'] ]
|
78 |
-
|
|
|
79 |
postprocessed_results = postprocess_result( extracted_results, postprocessed_results_path="/tmp/postprocessed_results.joblib", category_hierarchy=category2supercategory)
|
80 |
os.remove("/tmp/postprocessed_results.joblib")
|
81 |
|
82 |
formatted_results = format_output( postprocessed_results)
|
83 |
-
|
84 |
-
|
85 |
formatted_output = format_category( formatted_results)
|
86 |
|
87 |
img = plot_wordcloud(formatted_results['formatted_evidence'].values[0])
|
|
|
75 |
extracted_results = extract_results( crawled_results, classes=classes)
|
76 |
# logger.error(extracted_results['extracted_results'].columns)
|
77 |
extracted_results = extracted_results['extracted_results'][ [ 'business_id', 'business_name', 'address', 'category', 'evidence', 'phone_number', 'description', 'store_name'] ]
|
78 |
+
logger.debug( extracted_results['category'])
|
79 |
+
print(extracted_results['category'])
|
80 |
postprocessed_results = postprocess_result( extracted_results, postprocessed_results_path="/tmp/postprocessed_results.joblib", category_hierarchy=category2supercategory)
|
81 |
os.remove("/tmp/postprocessed_results.joblib")
|
82 |
|
83 |
formatted_results = format_output( postprocessed_results)
|
84 |
+
logger.debug( formatted_results)
|
85 |
+
print(formatted_results)
|
86 |
formatted_output = format_category( formatted_results)
|
87 |
|
88 |
img = plot_wordcloud(formatted_results['formatted_evidence'].values[0])
|
model.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import argparse
|
4 |
+
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import anthropic
|
7 |
+
from openai import OpenAI
|
8 |
+
|
9 |
+
from utils import parse_json_garbage
|
10 |
+
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
def llm( provider, model, system_prompt, user_content):
|
14 |
+
"""Invoke LLM service
|
15 |
+
Argument
|
16 |
+
--------
|
17 |
+
provider: str
|
18 |
+
openai or anthropic
|
19 |
+
model: str
|
20 |
+
Model name for the API
|
21 |
+
system_prompt: str
|
22 |
+
System prompt for the API
|
23 |
+
user_content: str
|
24 |
+
User prompt for the API
|
25 |
+
Return
|
26 |
+
------
|
27 |
+
response: str
|
28 |
+
"""
|
29 |
+
if provider=='openai':
|
30 |
+
client = OpenAI( organization = os.getenv('ORGANIZATION_ID'))
|
31 |
+
chat_completion = client.chat.completions.create(
|
32 |
+
messages=[
|
33 |
+
{
|
34 |
+
"role": "system",
|
35 |
+
"content": system_prompt
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"role": "user",
|
39 |
+
"content": user_content,
|
40 |
+
}
|
41 |
+
],
|
42 |
+
model = model,
|
43 |
+
response_format = {"type": "json_object"},
|
44 |
+
temperature = 0,
|
45 |
+
# stream = True
|
46 |
+
)
|
47 |
+
response = chat_completion.choices[0].message.content
|
48 |
+
|
49 |
+
elif provider=='anthropic':
|
50 |
+
client = anthropic.Client(api_key=os.getenv('ANTHROPIC_APIKEY'))
|
51 |
+
response = client.messages.create(
|
52 |
+
model= model,
|
53 |
+
system= system_prompt,
|
54 |
+
messages=[
|
55 |
+
{"role": "user", "content": user_content} # <-- user prompt
|
56 |
+
],
|
57 |
+
max_tokens = 1024
|
58 |
+
)
|
59 |
+
response = response.content[0].text
|
60 |
+
else:
|
61 |
+
raise Exception("Invalid provider")
|
62 |
+
|
63 |
+
return response
|
64 |
+
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
parser = argparse.ArgumentParser()
|
68 |
+
parser.add_argument("--provider", type=str, default='anthropic', help="openai or anthropic")
|
69 |
+
parser.add_argument("--model", type=str, default='claude-3-sonnet-20240229', help="Model name for the API",
|
70 |
+
choices = ["claude-3-sonnet-20240229", "claude-3-haiku-20240307", "gpt-3.5-turbo-0125", "gpt-4-0125-preview"])
|
71 |
+
parser.add_argument("--classes", type=list, default=['小吃店', '日式料理(含居酒屋,串燒)', '火(鍋/爐)', '東南亞料理(不含日韓)', '海鮮熱炒', '特色餐廳(含雞、鵝、牛、羊肉)', '傳統餐廳', '燒烤', '韓式料理(含火鍋,烤肉)', '西餐廳(含美式,義式,墨式)', '西餐廳(餐酒館、酒吧、飛鏢吧、pub、lounge bar)', '西餐廳(土耳其、漢堡、薯條、法式、歐式、印度)', '早餐'])
|
72 |
+
parser.add_argument("--task", type=list, default='extract', choices=['extract', 'classify'])
|
73 |
+
args = parser.parse_args()
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
classes = ['小吃店', '日式料理(含居酒屋,串燒)', '火(鍋/爐)', '東南亞料理(不含日韓)', '海鮮熱炒', '特色餐廳(含雞、鵝、牛、羊肉)', '傳統餐廳', '燒烤', '韓式料理(含火鍋,烤肉)', '西餐廳(含美式,義式,墨式)', ]
|
78 |
+
backup_classes = [ '中式', '西式']
|
79 |
+
|
80 |
+
extraction_prompt = '''
|
81 |
+
As a helpful and rigorous retail analyst, given the provided query and a list of search results for the query,
|
82 |
+
your task is to first identify relevant information of the identical store based on store name and proxmity of address if known. After that, extract `store_name`, `address`, `description`, `category` and `phone_number` from the found relevant information, where `category` can only be `小吃店`, `日式料理(含居酒屋,串燒)`, `火(鍋/爐)`, `東南亞料理(不含日韓)`, `海鮮熱炒`, `特色餐廳(含雞、鵝、牛、羊肉)`, `傳統餐廳`, `燒烤`, `韓式料理(含火鍋,烤肉)`, `西餐廳(含美式,義式,墨式)`, `西餐廳(餐酒館、酒吧、飛鏢吧、pub、lounge bar)`, `西餐廳(土耳其、漢堡、薯條、法式、歐式、印度)` or `早餐`.
|
83 |
+
It's very important to omit unrelated results. Do not make up any assumption.
|
84 |
+
Please think step by step, and output in json format. An example output json is like {"store_name": "...", "address": "...", "description": "... products, service or highlights ...", "category": "...", "phone_number": "..."}
|
85 |
+
If no relevant information has been found, simply output json with empty values.
|
86 |
+
I'll tip you and guarantee a place in heaven you do a great job completely according to my instruction.
|
87 |
+
'''
|
88 |
+
classification_prompt = f"""
|
89 |
+
As a helpful and rigorous retail analyst, given the provided information about a store,
|
90 |
+
your task is two-fold. First, classify provided evidence below into the mostly relevant category from the following: {classes}.
|
91 |
+
Second, if no relevant information has been found, classify the evidence into the mostly relevant supercategory from the following: {backup_classes}.
|
92 |
+
It's very important to omit unrelated piece of evidence and don't make up any assumption.
|
93 |
+
Please think step by step, and must output in json format. An example output json is like {{"category": "..."}}
|
94 |
+
If no relevant piece of information can ever be found at all, simply output json with empty string "".
|
95 |
+
I'll tip you and guarantee a place in heaven you do a great job completely according to my instruction.
|
96 |
+
"""
|
97 |
+
|
98 |
+
if args.task == 'extract':
|
99 |
+
system_prompt = extraction_prompt
|
100 |
+
elif args.task == 'classify':
|
101 |
+
system_prompt = classification_prompt
|
102 |
+
else:
|
103 |
+
raise Exception("Invalid task")
|
104 |
+
|
105 |
+
query = "山の迴饗"
|
106 |
+
search_results = str([{"title": "山の迴饗", "snippet": "謝謝大家這麼支持山の迴饗 我們會繼續努力用心做出美味的料理 ————————— ⛰️ 山の迴饗地址:台東縣關山鎮中華路56號訂位專線:0975-957-056 · #山的迴饗 · #夢想起飛"}, {"title": "山的迴饗餐館- 店家介紹", "snippet": "營業登記資料 · 統一編號. 92433454 · 公司狀況. 營業中 · 公司名稱. 山的迴饗餐館 · 公司類型. 獨資 · 資本總額. 30000 · 所在地. 臺東縣關山鎮中福里中華路56號 · 使用發票."}, {"title": "關山漫遊| 💥山の迴饗x night bar", "snippet": "山の迴饗x night bar 即將在12/1號台東關山開幕! 別再煩惱池上、鹿野找不到宵夜餐酒館 各位敬請期待並關注我們✨ night bar❌山的迴饗 12/1 ..."}, {"title": "山的迴饗| 中西複合式餐廳|焗烤飯|義大利麵 - 台灣美食網", "snippet": "山的迴饗| 中西複合式餐廳|焗烤飯|義大利麵|台式三杯雞|滷肉飯|便當|CP美食營業時間 ; 星期一, 休息 ; 星期二, 10:00–14:00 16:00–21:00 ; 星期三, 10:00–14:00 16:00– ..."}, {"title": "便當|CP美食- 山的迴饗| 中西複合式餐廳|焗烤飯|義大利麵", "snippet": "餐廳山的迴饗| 中西複合式餐廳|焗烤飯|義大利麵|台式三杯雞|滷肉飯|便當|CP美食google map 導航. 臺東縣關山鎮中華路56號 +886 975 957 056 ..."}, {"title": "山的迴饗餐館", "snippet": "山的迴饗餐館,統編:92433454,地址:臺東縣關山鎮中福里中華路56號,負責人姓名:周偉慈,設立日期:112年11月15日."}, {"title": "山的迴饗餐館", "snippet": "山的迴饗餐館. 資本總額(元), 30,000. 負責人, 周偉慈. 登記地址, 看地圖 臺東縣關山鎮中福里中華路56號 郵遞區號查詢. 設立日期, 2023-11-15. 資料管理 ..."}, {"title": "山的迴饗餐館, 公司統一編號92433454 - 食品業者登錄資料集", "snippet": "公司或商業登記名稱山的迴饗餐館的公司統一編號是92433454, 登錄項目是餐飲場所, 業者地址是台東縣關山鎮中福里中華路56號, 食品業者登錄字號是V-202257990-00001-5."}, {"title": "山的迴饗餐館, 公司統一編號92433454 - 食品業者登錄資料集", "snippet": "公司或商業登記名稱山的迴饗餐館的公司統一編號是92433454, 登錄項目是公司/商業登記, 業者地址是台東縣關山鎮中福里中華路56號, 食品業者登錄字號是V-202257990-00000-4 ..."}, {"title": "山的迴饗餐館", "snippet": "負責人, 周偉慈 ; 登記地址, 台東縣關山鎮中福里中華路56號 ; 公司狀態, 核准設立 「查詢最新營業狀況請至財政部稅務入口網 」 ; 資本額, 30,000元 ; 所在縣市 ..."}, {"title": "山的迴饗 | 關山美食|焗烤飯|酒吧|義大利麵|台式三杯雞|滷肉飯|便當|CP美食", "顧客評價": "324晚餐餐點豬排簡餐加白醬焗烤等等餐點。\t店家也提供免費的紅茶 綠茶 白開水 多種的調味料自取 總而言之 CP值真的很讚\t空間舒適涼爽,店員服務周到"}, {"title": "類似的店", "snippet": "['中國菜']\t['客家料理']\t['餐廳']\t['熟食店']\t['餐廳']"}, {"telephone_number": "0975 957 056"}])
|
107 |
+
|
108 |
+
# query = "大吃一斤泰國蝦麻辣牛肉爐"
|
109 |
+
# search_results = str([{"title": "大吃一斤泰國蝦麻辣牛肉爐", "snippet": "... 一支、本店特賣價600元免費代料理、 保證、活的!歡迎來電預定0975-147-848大吃一斤活蝦料理店新北市三重區自強路一段222號泰國蝦活蝦現場料理不漲價一斤維持一斤480元."}, {"title": "大吃一斤泰國蝦麻辣牛肉爐", "snippet": "... 一支、本店特賣價600元免費代料理、 保證、活的!歡迎來電預定0975-147-848大吃一斤活蝦料理店新北市三重區自強路一段222號泰國蝦活蝦現場料理不漲價一斤維持一斤480元."}, {"title": "大吃一斤", "snippet": "大吃一斤在foodpanda點的到,更多New Taipei City 推薦美食,線上訂立即送,下載foodpanda APP,20分鐘外送上門!瀏覽菜單和獨家優惠折扣."}, {"title": "大吃一斤(新北板橋店)菜單", "snippet": "大吃一斤(新北板橋店) 在foodpanda點的到,更多New Taipei City 推薦美食,線上訂立即送,下載foodpanda APP,20分鐘外送上門!"}, {"title": "大吃一斤活蝦餐廳- 店家介紹", "snippet": "大吃一斤活蝦餐廳. 資本總額. 200000. 代表人. 李錦鴻. 所在區域. 新北市. 所在地. 新北市三重區自強路1段222號(1樓). 商業類型. 獨資. 異動紀錄. 1111108. 營業狀態為: ..."}, {"title": "新北市| 三重區大吃一斤(泰國蝦牛肉料理店)", "snippet": "大吃一斤(泰國蝦牛肉料理店) 餐廳介紹 ; phone icon 電話, 0975 147 848 ; 營業時間, 星期一17:00–04:00 星期二17:00–04:00 星期三17:00–04:00 星期四17:00– ..."}, {"title": "大吃一斤活蝦餐廳", "snippet": "大吃一斤活蝦餐廳. 負責人姓名, 李錦鴻. 地址, 新北市三重區自強路1段222號(1樓). 現況, 核准設立. 資本額(元), 200,000. 組織類型, 獨資. 登記機關, 新北市政府經濟發展局."}, {"title": "【大吃一斤(泰國蝦牛肉料理店)】網友評價- 新北三重區合菜餐廳", "snippet": "大吃一斤(泰國蝦牛肉料理店) - 網友評論、最新食記(132則) 評分: 4.4分。大吃一斤(泰國蝦牛肉料理店)是位於新北三重區的餐廳,地址: 新北市 ... 生猛活海鮮."}, {"title": "大吃一斤生猛海鮮/活魚料理超值優惠方案", "snippet": "大吃一斤生猛海鮮/活魚料理. 電話:0975-147-848. 地址:新北市三重區自強路一段222號. 營業時間:週一至週日17: ..."}, {"title": "大吃一斤三重店 (泰國蝦料理.平價快炒熱炒.各式海鮮)", "顧客評價": "塔香蛤蜊、胡椒蝦、檸檬蝦、胡椒鳳螺 口味不錯食材新鮮 拍照時蛤蜊已經快被小孩吃光\t蝦子不大,店面不大,魚腥味很重,廁所很多蚊子,連菜裡面也有蚊子🦟,根本吃不下去\t新鮮好吃😋老闆人很Nice 推薦鹽烤蝦以及蒜味奶油蝦👍👍👍"}, {"title": "類似的店", "snippet": "['海鮮']\t['海鮮']\t['海鮮']\t['海鮮']"}, {"telephone_number": "0975 147 848"}])
|
110 |
+
|
111 |
+
if args.provider == "openai":
|
112 |
+
client = OpenAI( organization = os.getenv('ORGANIZATION_ID'))
|
113 |
+
# categories = ", ".join([ "`"+x+"`" for x in args.classes if x!='早餐' ])+ " or " + "`早餐`"
|
114 |
+
user_content = f'''
|
115 |
+
`query`: `{query}`,
|
116 |
+
`search_results`: {search_results}
|
117 |
+
'''
|
118 |
+
resp = llm( args.provider, args.model, system_prompt, user_content)
|
119 |
+
print(f"resp -> {resp}")
|
120 |
+
|
121 |
+
|
122 |
+
elif args.provider == "anthropic":
|
123 |
+
client = anthropic.Client(api_key=os.getenv('ANTHROPIC_APIKEY'))
|
124 |
+
user_content = f'''
|
125 |
+
`query`: `{query}`,
|
126 |
+
`search_results`: {search_results}
|
127 |
+
'''
|
128 |
+
print(f"user_content -> {user_content}")
|
129 |
+
resp = llm( args.provider, args.model, system_prompt, user_content)
|
130 |
+
print(resp)
|
sheet.py
CHANGED
@@ -14,6 +14,9 @@ import tiktoken
|
|
14 |
from openai import OpenAI
|
15 |
from tqdm import tqdm
|
16 |
|
|
|
|
|
|
|
17 |
load_dotenv()
|
18 |
ORGANIZATION_ID = os.getenv('OPENAI_ORGANIZATION_ID')
|
19 |
SERP_API_KEY = os.getenv('SERP_APIKEY')
|
@@ -69,69 +72,45 @@ def get_condensed_result(result):
|
|
69 |
# print( condensed_results )
|
70 |
return condensed_result
|
71 |
|
72 |
-
|
73 |
-
def compose_analysis( client, query, search_results, classes: list, model: str = 'gpt-3.5-turbo-0125'):
|
74 |
"""
|
75 |
Argument
|
76 |
query: str
|
77 |
search_results: str
|
|
|
|
|
|
|
78 |
model: "gpt-4-0125-preview" or 'gpt-3.5-turbo-0125'
|
79 |
Return
|
80 |
response: str
|
81 |
"""
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
messages=[
|
95 |
-
{
|
96 |
-
"role": "system",
|
97 |
-
"content": system_prompt
|
98 |
-
},
|
99 |
-
{
|
100 |
-
"role": "user",
|
101 |
-
"content": f'''
|
102 |
-
`query`: `{query}`,
|
103 |
-
`search_results`: {search_results}
|
104 |
-
''',
|
105 |
-
}
|
106 |
-
],
|
107 |
model = model,
|
108 |
-
|
109 |
-
|
110 |
-
# stream = True
|
111 |
)
|
112 |
-
# response = []
|
113 |
-
# for chunk in chat_completion:
|
114 |
-
# text = chunk.choices[0].delta.content or ""
|
115 |
-
# response.append(text)
|
116 |
-
# print( text, end="")
|
117 |
-
# return "".join(response)
|
118 |
-
response = chat_completion.choices[0].message.content
|
119 |
return response
|
120 |
|
121 |
|
122 |
-
def compose_classication(
|
123 |
-
client,
|
124 |
-
evidence,
|
125 |
-
classes: list = ['小吃店', '日式料理(含居酒屋,串燒)', '火(鍋/爐)', '東南亞料理(不含日韓)', '海鮮熱炒', '特色餐廳(含雞、鵝、牛、羊肉)', '傳統餐廳', '燒烤', '韓式料理(含火鍋,烤肉)', '西餐廳(含美式,義式,墨式)', ],
|
126 |
-
backup_classes: list = [ '中式', '西式'],
|
127 |
-
model: str = 'gpt-3.5-turbo-0125'
|
128 |
-
) -> str:
|
129 |
"""
|
130 |
Argument
|
131 |
client:
|
132 |
evidence: str
|
133 |
classes: list
|
134 |
-
|
|
|
135 |
Return
|
136 |
response: str
|
137 |
"""
|
@@ -141,44 +120,34 @@ def compose_classication(
|
|
141 |
pass
|
142 |
else:
|
143 |
raise Exception(f"Incorrect classes type: {type(classes)}")
|
144 |
-
|
145 |
-
|
146 |
-
{
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
I'll tip you and guarantee a place in heaven you do a great job completely according to my instruction.
|
156 |
-
'''
|
157 |
-
},
|
158 |
-
{
|
159 |
-
"role": "user",
|
160 |
-
"content": f'''
|
161 |
-
`evidence`: `{evidence}`
|
162 |
-
''',
|
163 |
-
}
|
164 |
-
],
|
165 |
model = model,
|
166 |
-
|
167 |
-
|
168 |
-
# stream = True
|
169 |
)
|
170 |
-
response = chat_completion.choices[0].message.content
|
171 |
return response
|
172 |
|
173 |
|
174 |
def classify_results(
|
175 |
analysis_results: pd.DataFrame,
|
|
|
|
|
|
|
|
|
176 |
input_column: str = 'evidence',
|
177 |
output_column: str = 'classified_category',
|
178 |
-
classes: list = ['小吃店', '日式料理(含居酒屋,串燒)', '火(鍋/爐)', '東南亞料理(不含日韓)', '海鮮熱炒', '特色餐廳(含雞、鵝、牛、羊肉)', '傳統餐廳', '燒烤', '韓式料理(含火鍋,烤肉)', '西餐廳(含美式,義式,墨式)'],
|
179 |
-
backup_classes: list = [ '中式', '西式']
|
180 |
):
|
181 |
-
"""
|
182 |
Argument
|
183 |
analysis_results: dataframe
|
184 |
input_column: str
|
@@ -187,13 +156,13 @@ def classify_results(
|
|
187 |
Return
|
188 |
analysis_results: dataframe
|
189 |
"""
|
190 |
-
client = OpenAI( organization = ORGANIZATION_ID)
|
191 |
classified_results = analysis_results.copy()
|
192 |
-
empty_indices = []
|
193 |
-
labels = []
|
194 |
for idx, evidence in zip( analysis_results['index'], analysis_results[input_column]):
|
195 |
try:
|
196 |
-
|
|
|
|
|
197 |
labels.append(label)
|
198 |
except Exception as e:
|
199 |
print(f"# CLASSIFICATION error -> evidence: {e}")
|
@@ -206,13 +175,15 @@ def classify_results(
|
|
206 |
"empty_indices": empty_indices
|
207 |
}
|
208 |
|
209 |
-
def classify_results_mp( extracted_results: pd.DataFrame, classified_file_path, classes, backup_classes, n_processes: int = 4):
|
210 |
"""
|
211 |
Argument
|
212 |
extracted_results:
|
213 |
classified_file_path:
|
214 |
-
classes: ['小吃店', '日式料理(含居酒屋,串燒)', '火(鍋/爐)', '東南亞料理(不含日韓)', '海鮮熱炒', '特色餐廳(含雞、鵝、牛、羊肉)', '傳統餐廳', '燒烤', '韓式料理(含火鍋,烤肉)', '西餐廳(含美式,義式,墨式)']
|
215 |
-
backup_classes: [ '中式', '西式']
|
|
|
|
|
216 |
n_processes: int
|
217 |
Return
|
218 |
classified_results: dataframe
|
@@ -228,10 +199,9 @@ def classify_results_mp( extracted_results: pd.DataFrame, classified_file_path,
|
|
228 |
classify_results,
|
229 |
[ (
|
230 |
d,
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
backup_classes
|
235 |
) for d in split_data]
|
236 |
)
|
237 |
classified_results = merge_results( classified_results, dataframe_columns=['classified_results'], list_columns=['empty_indices'])
|
@@ -329,16 +299,14 @@ def crawl_results_mp( data: pd.DataFrame, crawl_file_path: str, n_processes: int
|
|
329 |
print( f"total time: {time.time() - st}")
|
330 |
return crawled_results
|
331 |
|
332 |
-
def extract_results( data: pd.DataFrame, classes: list ):
|
333 |
"""
|
334 |
Argument
|
335 |
data: `evidence`, `result`
|
336 |
Return
|
337 |
extracted_results: dataframe of `extracted_evidence`
|
338 |
"""
|
339 |
-
|
340 |
-
extracted_results = []
|
341 |
-
empty_indices = []
|
342 |
for i, d in tqdm(enumerate(data.itertuples())):
|
343 |
idx = d[1]
|
344 |
evidence = d.evidence
|
@@ -348,10 +316,10 @@ def extract_results( data: pd.DataFrame, classes: list ):
|
|
348 |
ana_res = None
|
349 |
query = compose_query( address, business_name)
|
350 |
try:
|
351 |
-
|
352 |
-
|
353 |
except Exception as e:
|
354 |
-
print(f"# ANALYSIS error {e}
|
355 |
empty_indices.append(i)
|
356 |
continue
|
357 |
|
@@ -360,7 +328,7 @@ def extract_results( data: pd.DataFrame, classes: list ):
|
|
360 |
"business_id": business_id,
|
361 |
"business_name": business_name,
|
362 |
"evidence": evidence,
|
363 |
-
**
|
364 |
} )
|
365 |
extracted_results = pd.DataFrame(extracted_results)
|
366 |
|
@@ -369,9 +337,12 @@ def extract_results( data: pd.DataFrame, classes: list ):
|
|
369 |
"empty_indices": empty_indices
|
370 |
}
|
371 |
|
372 |
-
def extract_results_mp( crawled_results, extracted_file_path, classes: list):
|
373 |
"""
|
374 |
Argument
|
|
|
|
|
|
|
375 |
Return
|
376 |
Reference
|
377 |
200 records, 4 processes, 502.26914715766907
|
@@ -380,8 +351,8 @@ def extract_results_mp( crawled_results, extracted_file_path, classes: list):
|
|
380 |
# args.extracted_file_path = "data/extracted_results.joblib"
|
381 |
if not os.path.exists(extracted_file_path):
|
382 |
split_data = split_dataframe( crawled_results)
|
383 |
-
with mp.Pool(
|
384 |
-
extracted_results = pool.starmap( extract_results, [ (x, classes) for x in split_data])
|
385 |
extracted_results = merge_results( extracted_results, dataframe_columns=['extracted_results'], list_columns=['empty_indices'])
|
386 |
with open( extracted_file_path, "wb") as f:
|
387 |
joblib.dump( extracted_results, f)
|
@@ -522,57 +493,59 @@ def main(args):
|
|
522 |
Argument
|
523 |
args: argparse
|
524 |
"""
|
525 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
526 |
## 讀取資料名單 ##
|
527 |
-
data = get_leads(args.data_path).tail(
|
528 |
|
529 |
## 進行爬蟲與分析 ##
|
530 |
-
|
531 |
-
crawled_results =
|
532 |
|
533 |
## 方法 1: 擷取關鍵資訊與分類 ##
|
534 |
-
# extracted_results = extract_results(
|
535 |
-
# crawled_results['crawled_results']
|
536 |
-
# )
|
537 |
extracted_results = extract_results_mp(
|
538 |
crawled_results = crawled_results['crawled_results'],
|
539 |
-
extracted_file_path =
|
|
|
|
|
|
|
|
|
540 |
)
|
541 |
|
542 |
## 方法2: 直接對爬蟲結果分類 ##
|
543 |
-
# classified_results = classify_results(
|
544 |
-
# extracted_results['extracted_results'],
|
545 |
-
# input_column = 'evidence',
|
546 |
-
# output_column = 'classified_category',
|
547 |
-
# classes = ['中式', '西式'],
|
548 |
-
# backup_classes = [ '中式', '西式']
|
549 |
-
# )
|
550 |
classified_results = classify_results_mp(
|
551 |
extracted_results['extracted_results'],
|
552 |
-
|
553 |
-
classes=args.classes,
|
554 |
-
backup_classes=args.backup_classes,
|
555 |
-
|
|
|
|
|
556 |
)
|
557 |
|
558 |
## 合併分析結果 ##
|
559 |
combined_results = combine_results(
|
560 |
classified_results['classified_results'],
|
561 |
-
|
562 |
-
src_column='classified_category',
|
563 |
-
tgt_column='category',
|
564 |
-
strategy=
|
565 |
)
|
566 |
|
567 |
## 後處理分析結果 ##
|
568 |
postprossed_results = postprocess_result(
|
569 |
combined_results,
|
570 |
-
|
571 |
category2supercategory
|
572 |
)
|
573 |
|
574 |
formatted_results = format_output( postprossed_results, input_column = 'evidence', output_column = 'formatted_evidence', format_func = format_evidence)
|
575 |
-
formatted_results.to_csv(
|
576 |
|
577 |
|
578 |
category2supercategory = {
|
@@ -623,15 +596,18 @@ if __name__=='__main__':
|
|
623 |
|
624 |
parser = argparse.ArgumentParser()
|
625 |
parser.add_argument("--data_path", type=str, default="data/餐廳類型分類.xlsx - 測試清單.csv")
|
626 |
-
parser.add_argument("--
|
627 |
-
parser.add_argument("--
|
628 |
-
parser.add_argument("--
|
629 |
-
parser.add_argument("--
|
630 |
-
parser.add_argument("--
|
631 |
-
parser.add_argument("--
|
|
|
632 |
parser.add_argument("--classes", type=list, default=['小吃店', '日式料理(含居酒屋,串燒)', '火(鍋/爐)', '東南亞料理(不含日韓)', '海鮮熱炒', '特��餐廳(含雞、鵝、牛、羊肉)', '傳統餐廳', '燒烤', '韓式料理(含火鍋,烤肉)', '西餐廳(含美式,義式,墨式)', '西餐廳(餐酒館、酒吧、飛鏢吧、pub、lounge bar)', '西餐廳(土耳其、漢堡、薯條、法式、歐式、印度)', '早餐'])
|
633 |
parser.add_argument("--backup_classes", type=list, default=['中式', '西式'])
|
634 |
-
parser.add_argument("--strategy", type=str, default='
|
|
|
|
|
635 |
parser.add_argument("--n_processes", type=int, default=4)
|
636 |
args = parser.parse_args()
|
637 |
|
|
|
14 |
from openai import OpenAI
|
15 |
from tqdm import tqdm
|
16 |
|
17 |
+
from model import llm
|
18 |
+
from utils import parse_json_garbage
|
19 |
+
|
20 |
load_dotenv()
|
21 |
ORGANIZATION_ID = os.getenv('OPENAI_ORGANIZATION_ID')
|
22 |
SERP_API_KEY = os.getenv('SERP_APIKEY')
|
|
|
72 |
# print( condensed_results )
|
73 |
return condensed_result
|
74 |
|
75 |
+
def compose_extraction( query, search_results, classes: list, provider: str, model: str):
|
|
|
76 |
"""
|
77 |
Argument
|
78 |
query: str
|
79 |
search_results: str
|
80 |
+
system_prompt: str
|
81 |
+
classes: list, `小吃店`, `日式料理(含居酒屋,串燒)`, `火(鍋/爐)`, `東南亞料理(不含日韓)`, `海鮮熱炒`, `特色餐廳(含雞、鵝、牛、羊肉)`, `傳統餐廳`, `燒烤`, `韓式料理(含火鍋,烤肉)`, `西餐廳(含美式,義式,墨式)`, `西餐廳(餐酒館、酒吧、飛鏢吧、pub、lounge bar)`, `西餐廳(土耳其、漢堡、薯條、法式、歐式、印度)` or `早餐`
|
82 |
+
provider: "openai"
|
83 |
model: "gpt-4-0125-preview" or 'gpt-3.5-turbo-0125'
|
84 |
Return
|
85 |
response: str
|
86 |
"""
|
87 |
+
classes = ", ".join([ "`"+x+"`" for x in classes if x!='早餐' ])+ " or " + "`早餐`"
|
88 |
+
system_prompt = f'''
|
89 |
+
As a helpful and rigorous retail analyst, given the provided query and a list of search results for the query,
|
90 |
+
your task is to first identify relevant information of the identical store based on store name and proxmity of address if known. After that, extract `store_name`, `address`, `description`, `category` and `phone_number` from the found relevant information, where `category` can only be {classes}.
|
91 |
+
It's very important to omit unrelated results. Do not make up any assumption.
|
92 |
+
Please think step by step, and output in json format. An example output json is like {{"store_name": "...", "address": "...", "description": "... products, service or highlights ...", "category": "...", "phone_number": "..."}}
|
93 |
+
If no relevant information has been found, simply output json with empty values.
|
94 |
+
I'll tip you and guarantee a place in heaven you do a great job completely according to my instruction.
|
95 |
+
'''
|
96 |
+
user_content = f"`query`: `{query}`\n`search_results`: {search_results}"
|
97 |
+
response = llm(
|
98 |
+
provider = provider,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
model = model,
|
100 |
+
system_prompt = system_prompt,
|
101 |
+
user_content = user_content
|
|
|
102 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
return response
|
104 |
|
105 |
|
106 |
+
def compose_classication( user_content, classes: list, backup_classes: list, provider: str, model: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
"""
|
108 |
Argument
|
109 |
client:
|
110 |
evidence: str
|
111 |
classes: list
|
112 |
+
provider: e.g. 'openai'
|
113 |
+
model: e.g. 'gpt-3.5-turbo-0125', 'gpt-4-0125-preview'
|
114 |
Return
|
115 |
response: str
|
116 |
"""
|
|
|
120 |
pass
|
121 |
else:
|
122 |
raise Exception(f"Incorrect classes type: {type(classes)}")
|
123 |
+
system_prompt = f"""
|
124 |
+
As a helpful and rigorous retail analyst, given the provided information about a store,
|
125 |
+
your task is two-fold. First, classify provided evidence below into the mostly relevant category from the following: {classes}.
|
126 |
+
Second, if no relevant information has been found, classify the evidence into the mostly relevant supercategory from the following: {backup_classes}.
|
127 |
+
It's very important to omit unrelated piece of evidence and don't make up any assumption.
|
128 |
+
Please think step by step, and must output in json format. An example output json is like {{"category": "..."}}
|
129 |
+
If no relevant piece of information can ever be found at all, simply output json with empty string "".
|
130 |
+
I'll tip you and guarantee a place in heaven you do a great job completely according to my instruction.
|
131 |
+
"""
|
132 |
+
response = llm(
|
133 |
+
provider = provider,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
model = model,
|
135 |
+
system_prompt = system_prompt,
|
136 |
+
user_content = user_content,
|
|
|
137 |
)
|
|
|
138 |
return response
|
139 |
|
140 |
|
141 |
def classify_results(
|
142 |
analysis_results: pd.DataFrame,
|
143 |
+
classes: list,
|
144 |
+
backup_classes: list,
|
145 |
+
provider: str,
|
146 |
+
model: str,
|
147 |
input_column: str = 'evidence',
|
148 |
output_column: str = 'classified_category',
|
|
|
|
|
149 |
):
|
150 |
+
"""Classify the results
|
151 |
Argument
|
152 |
analysis_results: dataframe
|
153 |
input_column: str
|
|
|
156 |
Return
|
157 |
analysis_results: dataframe
|
158 |
"""
|
|
|
159 |
classified_results = analysis_results.copy()
|
160 |
+
labels, empty_indices = [], []
|
|
|
161 |
for idx, evidence in zip( analysis_results['index'], analysis_results[input_column]):
|
162 |
try:
|
163 |
+
user_content = f'''`evidence`: `{evidence}`'''
|
164 |
+
pred_cls = compose_classication( user_content, classes=classes, backup_classes=backup_classes, provider=provider, model=model)
|
165 |
+
label = parse_json_garbage(pred_cls)['category']
|
166 |
labels.append(label)
|
167 |
except Exception as e:
|
168 |
print(f"# CLASSIFICATION error -> evidence: {e}")
|
|
|
175 |
"empty_indices": empty_indices
|
176 |
}
|
177 |
|
178 |
+
def classify_results_mp( extracted_results: pd.DataFrame, classified_file_path: str, classes: list, backup_classes: list, provider: str, model: str, n_processes: int = 4):
|
179 |
"""
|
180 |
Argument
|
181 |
extracted_results:
|
182 |
classified_file_path:
|
183 |
+
classes: e.g. ['小吃店', '日式料理(含居酒屋,串燒)', '火(鍋/爐)', '東南亞料理(不含日韓)', '海鮮熱炒', '特色餐廳(含雞、鵝、牛、羊肉)', '傳統餐廳', '燒烤', '韓式料理(含火鍋,烤肉)', '西餐廳(含美式,義式,墨式)']
|
184 |
+
backup_classes: e.g. [ '中式', '西式']
|
185 |
+
provider:
|
186 |
+
model:
|
187 |
n_processes: int
|
188 |
Return
|
189 |
classified_results: dataframe
|
|
|
199 |
classify_results,
|
200 |
[ (
|
201 |
d,
|
202 |
+
classes, backup_classes,
|
203 |
+
provider, model,
|
204 |
+
'evidence', 'classified_category',
|
|
|
205 |
) for d in split_data]
|
206 |
)
|
207 |
classified_results = merge_results( classified_results, dataframe_columns=['classified_results'], list_columns=['empty_indices'])
|
|
|
299 |
print( f"total time: {time.time() - st}")
|
300 |
return crawled_results
|
301 |
|
302 |
+
def extract_results( data: pd.DataFrame, classes: list, provider: str, model: str):
|
303 |
"""
|
304 |
Argument
|
305 |
data: `evidence`, `result`
|
306 |
Return
|
307 |
extracted_results: dataframe of `extracted_evidence`
|
308 |
"""
|
309 |
+
extracted_results, empty_indices, ext_res = [], [], []
|
|
|
|
|
310 |
for i, d in tqdm(enumerate(data.itertuples())):
|
311 |
idx = d[1]
|
312 |
evidence = d.evidence
|
|
|
316 |
ana_res = None
|
317 |
query = compose_query( address, business_name)
|
318 |
try:
|
319 |
+
ext_res = compose_extraction( query = query, search_results = evidence, classes = classes, provider = provider, model = model)
|
320 |
+
ext_res = parse_json_garbage(ext_res)
|
321 |
except Exception as e:
|
322 |
+
print(f"# ANALYSIS error: e = {e}, i = {i}, q = {query}, ext_res = {ext_res}")
|
323 |
empty_indices.append(i)
|
324 |
continue
|
325 |
|
|
|
328 |
"business_id": business_id,
|
329 |
"business_name": business_name,
|
330 |
"evidence": evidence,
|
331 |
+
** ext_res
|
332 |
} )
|
333 |
extracted_results = pd.DataFrame(extracted_results)
|
334 |
|
|
|
337 |
"empty_indices": empty_indices
|
338 |
}
|
339 |
|
340 |
+
def extract_results_mp( crawled_results, extracted_file_path, classes: list, provider: str, model: str, n_processes: int = 4):
|
341 |
"""
|
342 |
Argument
|
343 |
+
crawled_results: dataframe
|
344 |
+
extracted_file_path
|
345 |
+
classes: list
|
346 |
Return
|
347 |
Reference
|
348 |
200 records, 4 processes, 502.26914715766907
|
|
|
351 |
# args.extracted_file_path = "data/extracted_results.joblib"
|
352 |
if not os.path.exists(extracted_file_path):
|
353 |
split_data = split_dataframe( crawled_results)
|
354 |
+
with mp.Pool(n_processes) as pool:
|
355 |
+
extracted_results = pool.starmap( extract_results, [ (x, classes, provider, model) for x in split_data])
|
356 |
extracted_results = merge_results( extracted_results, dataframe_columns=['extracted_results'], list_columns=['empty_indices'])
|
357 |
with open( extracted_file_path, "wb") as f:
|
358 |
joblib.dump( extracted_results, f)
|
|
|
493 |
Argument
|
494 |
args: argparse
|
495 |
"""
|
496 |
+
crawled_file_path = os.path.join( args.output_dir, args.crawled_file_path)
|
497 |
+
extracted_file_path = os.path.join( args.output_dir, args.extracted_file_path)
|
498 |
+
classified_file_path = os.path.join( args.output_dir, args.classified_file_path)
|
499 |
+
combined_file_path = os.path.join( args.output_dir, args.combined_file_path)
|
500 |
+
postprocessed_results = os.path.join( args.output_dir, args.postprocessed_results)
|
501 |
+
formatted_results_path = os.path.join( args.output_dir, args.formatted_results_path)
|
502 |
+
|
503 |
## 讀取資料名單 ##
|
504 |
+
data = get_leads(args.data_path).tail(5)
|
505 |
|
506 |
## 進行爬蟲與分析 ##
|
507 |
+
crawled_results = crawl_results_mp( data, crawled_file_path, n_processes=args.n_processes)
|
508 |
+
crawled_results = { k:v[-5:] for k,v in crawled_results.items()}
|
509 |
|
510 |
## 方法 1: 擷取關鍵資訊與分類 ##
|
|
|
|
|
|
|
511 |
extracted_results = extract_results_mp(
|
512 |
crawled_results = crawled_results['crawled_results'],
|
513 |
+
extracted_file_path = extracted_file_path,
|
514 |
+
classes = args.classes,
|
515 |
+
provider = args.provider,
|
516 |
+
model = args.model,
|
517 |
+
n_processes = args.n_processes
|
518 |
)
|
519 |
|
520 |
## 方法2: 直接對爬蟲結果分類 ##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
521 |
classified_results = classify_results_mp(
|
522 |
extracted_results['extracted_results'],
|
523 |
+
classified_file_path,
|
524 |
+
classes = args.classes,
|
525 |
+
backup_classes = args.backup_classes,
|
526 |
+
provider = args.provider,
|
527 |
+
model = args.model,
|
528 |
+
n_processes = args.n_processes
|
529 |
)
|
530 |
|
531 |
## 合併分析結果 ##
|
532 |
combined_results = combine_results(
|
533 |
classified_results['classified_results'],
|
534 |
+
combined_file_path,
|
535 |
+
src_column = 'classified_category',
|
536 |
+
tgt_column = 'category',
|
537 |
+
strategy = args.strategy
|
538 |
)
|
539 |
|
540 |
## 後處理分析結果 ##
|
541 |
postprossed_results = postprocess_result(
|
542 |
combined_results,
|
543 |
+
postprocessed_results,
|
544 |
category2supercategory
|
545 |
)
|
546 |
|
547 |
formatted_results = format_output( postprossed_results, input_column = 'evidence', output_column = 'formatted_evidence', format_func = format_evidence)
|
548 |
+
formatted_results.to_csv( formatted_results_path, index=False)
|
549 |
|
550 |
|
551 |
category2supercategory = {
|
|
|
596 |
|
597 |
parser = argparse.ArgumentParser()
|
598 |
parser.add_argument("--data_path", type=str, default="data/餐廳類型分類.xlsx - 測試清單.csv")
|
599 |
+
parser.add_argument("--output_dir", type=str, help='output directory')
|
600 |
+
parser.add_argument("--classified_file_path", type=str, default="classified_results.joblib")
|
601 |
+
parser.add_argument("--extracted_file_path", type=str, default="extracted_results.joblib")
|
602 |
+
parser.add_argument("--crawled_file_path", type=str, default="crawled_results.joblib")
|
603 |
+
parser.add_argument("--combined_file_path", type=str, default="combined_results.joblib")
|
604 |
+
parser.add_argument("--postprocessed_results", type=str, default="postprocessed_results.joblib")
|
605 |
+
parser.add_argument("--formatted_results_path", type=str, default="formatted_results.csv")
|
606 |
parser.add_argument("--classes", type=list, default=['小吃店', '日式料理(含居酒屋,串燒)', '火(鍋/爐)', '東南亞料理(不含日韓)', '海鮮熱炒', '特��餐廳(含雞、鵝、牛、羊肉)', '傳統餐廳', '燒烤', '韓式料理(含火鍋,烤肉)', '西餐廳(含美式,義式,墨式)', '西餐廳(餐酒館、酒吧、飛鏢吧、pub、lounge bar)', '西餐廳(土耳其、漢堡、薯條、法式、歐式、印度)', '早餐'])
|
607 |
parser.add_argument("--backup_classes", type=list, default=['中式', '西式'])
|
608 |
+
parser.add_argument("--strategy", type=str, default='patch', choices=['replace', 'patch'])
|
609 |
+
parser.add_argument("--provider", type=str, default='anthropic', choices=['openai', 'anthropic'])
|
610 |
+
parser.add_argument("--model", type=str, default='claude-3-sonnet-20240229', choices=['claude-3-sonnet-20240229', 'claude-3-haiku-20240307', 'gpt-3.5-turbo-0125', 'gpt-4-0125-preview'])
|
611 |
parser.add_argument("--n_processes", type=int, default=4)
|
612 |
args = parser.parse_args()
|
613 |
|
utils.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
def parse_json_garbage(s):
|
4 |
+
s = s[next(idx for idx, c in enumerate(s) if c in "{["):]
|
5 |
+
try:
|
6 |
+
return json.loads(s)
|
7 |
+
except json.JSONDecodeError as e:
|
8 |
+
return json.loads(s[:e.pos])
|
9 |
+
|