File size: 5,083 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

"""
This script is adapted from the torchvision one.
"""

import os.path

import jinja2
import yaml
from packaging import version


# The CUDA versions which have pytorch conda packages available for linux for each
# version of pytorch.
CONDA_CUDA_VERSIONS = {
    "1.12.0": ["cu113", "cu116"],
    "1.12.1": ["cu113", "cu116"],
    "1.13.0": ["cu116", "cu117"],
    "1.13.1": ["cu116", "cu117"],
    "2.0.0": ["cu117", "cu118"],
    "2.0.1": ["cu117", "cu118"],
    "2.1.0": ["cu118", "cu121"],
    "2.1.1": ["cu118", "cu121"],
    "2.1.2": ["cu118", "cu121"],
    "2.2.0": ["cu118", "cu121"],
    "2.2.2": ["cu118", "cu121"],
    "2.3.1": ["cu118", "cu121"],
}


def conda_docker_image_for_cuda(cuda_version):
    if len(cuda_version) != 5:
        raise ValueError("Unknown cuda version")
    return "pytorch/conda-builder:cuda" + cuda_version[2:]


def pytorch_versions_for_python(python_version):
    if python_version in ["3.8", "3.9"]:
        return list(CONDA_CUDA_VERSIONS)
    if python_version == "3.10":
        return [
            i
            for i in CONDA_CUDA_VERSIONS
            if version.Version(i) >= version.Version("1.11.0")
        ]
    if python_version == "3.11":
        return [
            i
            for i in CONDA_CUDA_VERSIONS
            if version.Version(i) >= version.Version("2.1.0")
        ]
    if python_version == "3.12":
        return [
            i
            for i in CONDA_CUDA_VERSIONS
            if version.Version(i) >= version.Version("2.2.0")
        ]


def workflows(prefix="", filter_branch=None, upload=False, indentation=6):
    w = []
    for btype in ["conda"]:
        for python_version in ["3.8", "3.9", "3.10", "3.11", "3.12"]:
            for pytorch_version in pytorch_versions_for_python(python_version):
                for cu_version in CONDA_CUDA_VERSIONS[pytorch_version]:
                    w += workflow_pair(
                        btype=btype,
                        python_version=python_version,
                        pytorch_version=pytorch_version,
                        cu_version=cu_version,
                        prefix=prefix,
                        upload=upload,
                        filter_branch=filter_branch,
                    )

    return indent(indentation, w)


def workflow_pair(
    *,
    btype,
    python_version,
    pytorch_version,
    cu_version,
    prefix="",
    upload=False,
    filter_branch,
):

    w = []
    py = python_version.replace(".", "")
    pyt = pytorch_version.replace(".", "")
    base_workflow_name = f"{prefix}linux_{btype}_py{py}_{cu_version}_pyt{pyt}"

    w.append(
        generate_base_workflow(
            base_workflow_name=base_workflow_name,
            python_version=python_version,
            pytorch_version=pytorch_version,
            cu_version=cu_version,
            btype=btype,
            filter_branch=filter_branch,
        )
    )

    if upload:
        w.append(
            generate_upload_workflow(
                base_workflow_name=base_workflow_name,
                btype=btype,
                cu_version=cu_version,
                filter_branch=filter_branch,
            )
        )

    return w


def generate_base_workflow(
    *,
    base_workflow_name,
    python_version,
    cu_version,
    pytorch_version,
    btype,
    filter_branch=None,
):

    d = {
        "name": base_workflow_name,
        "python_version": python_version,
        "cu_version": cu_version,
        "pytorch_version": pytorch_version,
        "context": "DOCKERHUB_TOKEN",
    }

    conda_docker_image = conda_docker_image_for_cuda(cu_version)
    if conda_docker_image is not None:
        d["conda_docker_image"] = conda_docker_image

    if filter_branch is not None:
        d["filters"] = {"branches": {"only": filter_branch}}

    return {f"binary_linux_{btype}": d}


def generate_upload_workflow(*, base_workflow_name, btype, cu_version, filter_branch):
    d = {
        "name": f"{base_workflow_name}_upload",
        "context": "org-member",
        "requires": [base_workflow_name],
    }

    if btype == "wheel":
        d["subfolder"] = cu_version + "/"

    if filter_branch is not None:
        d["filters"] = {"branches": {"only": filter_branch}}

    return {f"binary_{btype}_upload": d}


def indent(indentation, data_list):
    if len(data_list) == 0:
        return ""
    return ("\n" + " " * indentation).join(
        yaml.dump(data_list, default_flow_style=False).splitlines()
    )


if __name__ == "__main__":
    d = os.path.dirname(__file__)
    env = jinja2.Environment(
        loader=jinja2.FileSystemLoader(d),
        lstrip_blocks=True,
        autoescape=False,
        keep_trailing_newline=True,
    )

    with open(os.path.join(d, "config.yml"), "w") as f:
        f.write(env.get_template("config.in.yml").render(workflows=workflows))