File size: 5,530 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

"""
This example demonstrates camera parameter optimization with the plain
pulsar interface. For this, a reference image has been pre-generated
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_cam.png`).
The same scene parameterization is loaded and the camera parameters
distorted. Gradient-based optimization is used to converge towards the
original camera parameters.
Output: cam.gif.
"""
import logging
import math
from os import path

import cv2
import imageio
import numpy as np
import torch
from pytorch3d.renderer.points.pulsar import Renderer
from pytorch3d.transforms import axis_angle_to_matrix, matrix_to_rotation_6d
from torch import nn, optim


LOGGER = logging.getLogger(__name__)
N_POINTS = 20
WIDTH = 1_000
HEIGHT = 1_000
DEVICE = torch.device("cuda")


class SceneModel(nn.Module):
    """
    A simple scene model to demonstrate use of pulsar in PyTorch modules.

    The scene model is parameterized with sphere locations (vert_pos),
    channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
    camera rotation (cam_rot) and sensor focal length and width (cam_sensor).

    The forward method of the model renders this scene description. Any
    of these parameters could instead be passed as inputs to the forward
    method and come from a different model.
    """

    def __init__(self):
        super(SceneModel, self).__init__()
        self.gamma = 0.1
        # Points.
        torch.manual_seed(1)
        vert_pos = torch.rand(N_POINTS, 3, dtype=torch.float32) * 10.0
        vert_pos[:, 2] += 25.0
        vert_pos[:, :2] -= 5.0
        self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=False))
        self.register_parameter(
            "vert_col",
            nn.Parameter(
                torch.rand(N_POINTS, 3, dtype=torch.float32), requires_grad=False
            ),
        )
        self.register_parameter(
            "vert_rad",
            nn.Parameter(
                torch.rand(N_POINTS, dtype=torch.float32), requires_grad=False
            ),
        )
        self.register_parameter(
            "cam_pos",
            nn.Parameter(
                torch.tensor([0.1, 0.1, 0.0], dtype=torch.float32), requires_grad=True
            ),
        )
        self.register_parameter(
            "cam_rot",
            # We're using the 6D rot. representation for better gradients.
            nn.Parameter(
                matrix_to_rotation_6d(
                    axis_angle_to_matrix(
                        torch.tensor(
                            [
                                [0.02, math.pi + 0.02, 0.01],
                            ],
                            dtype=torch.float32,
                        )
                    )
                )[0],
                requires_grad=True,
            ),
        )
        self.register_parameter(
            "cam_sensor",
            nn.Parameter(
                torch.tensor([4.8, 1.8], dtype=torch.float32), requires_grad=True
            ),
        )
        self.renderer = Renderer(WIDTH, HEIGHT, N_POINTS, right_handed_system=True)

    def forward(self):
        return self.renderer.forward(
            self.vert_pos,
            self.vert_col,
            self.vert_rad,
            torch.cat([self.cam_pos, self.cam_rot, self.cam_sensor]),
            self.gamma,
            45.0,
        )


def cli():
    """
    Camera optimization example using pulsar.

    Writes to `cam.gif`.
    """
    LOGGER.info("Loading reference...")
    # Load reference.
    ref = (
        torch.from_numpy(
            imageio.imread(
                "../../tests/pulsar/reference/examples_TestRenderer_test_cam.png"
            )[:, ::-1, :].copy()
        ).to(torch.float32)
        / 255.0
    ).to(DEVICE)
    # Set up model.
    model = SceneModel().to(DEVICE)
    # Optimizer.
    optimizer = optim.SGD(
        [
            {"params": [model.cam_pos], "lr": 1e-4},  # 1e-3
            {"params": [model.cam_rot], "lr": 5e-6},
            {"params": [model.cam_sensor], "lr": 1e-4},
        ]
    )

    LOGGER.info("Writing video to `%s`.", path.abspath("cam.gif"))
    writer = imageio.get_writer("cam.gif", format="gif", fps=25)

    # Optimize.
    for i in range(300):
        optimizer.zero_grad()
        result = model()
        # Visualize.
        result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
        cv2.imshow("opt", result_im[:, :, ::-1])
        writer.append_data(result_im)
        overlay_img = np.ascontiguousarray(
            ((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
                :, :, ::-1
            ]
        )
        overlay_img = cv2.putText(
            overlay_img,
            "Step %d" % (i),
            (10, 40),
            cv2.FONT_HERSHEY_SIMPLEX,
            1,
            (0, 0, 0),
            2,
            cv2.LINE_AA,
            False,
        )
        cv2.imshow("overlay", overlay_img)
        cv2.waitKey(1)
        # Update.
        loss = ((result - ref) ** 2).sum()
        LOGGER.info("loss %d: %f", i, loss.item())
        loss.backward()
        optimizer.step()
    writer.close()
    LOGGER.info("Done.")


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    cli()