Spaces:
Running
Running
File size: 7,731 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""
This example demonstrates camera parameter optimization with the pulsar
PyTorch3D interface. For this, a reference image has been pre-generated
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_cam.png`).
The same scene parameterization is loaded and the camera parameters
distorted. Gradient-based optimization is used to converge towards the
original camera parameters.
Output: cam-pt3d.gif
"""
import logging
from os import path
import cv2
import imageio
import numpy as np
import torch
from pytorch3d.renderer.cameras import PerspectiveCameras
from pytorch3d.renderer.points import (
PointsRasterizationSettings,
PointsRasterizer,
PulsarPointsRenderer,
)
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.transforms import axis_angle_to_matrix
from torch import nn, optim
LOGGER = logging.getLogger(__name__)
N_POINTS = 20
WIDTH = 1_000
HEIGHT = 1_000
DEVICE = torch.device("cuda")
class SceneModel(nn.Module):
"""
A simple scene model to demonstrate use of pulsar in PyTorch modules.
The scene model is parameterized with sphere locations (vert_pos),
channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
camera rotation (cam_rot) and sensor focal length and width (cam_sensor).
The forward method of the model renders this scene description. Any
of these parameters could instead be passed as inputs to the forward
method and come from a different model.
"""
def __init__(self):
super(SceneModel, self).__init__()
self.gamma = 0.1
# Points.
torch.manual_seed(1)
vert_pos = torch.rand(N_POINTS, 3, dtype=torch.float32) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=False))
self.register_parameter(
"vert_col",
nn.Parameter(
torch.rand(N_POINTS, 3, dtype=torch.float32),
requires_grad=False,
),
)
self.register_parameter(
"vert_rad",
nn.Parameter(
torch.rand(N_POINTS, dtype=torch.float32),
requires_grad=False,
),
)
self.register_parameter(
"cam_pos",
nn.Parameter(
torch.tensor([0.1, 0.1, 0.0], dtype=torch.float32),
requires_grad=True,
),
)
self.register_parameter(
"cam_rot",
# We're using the 6D rot. representation for better gradients.
nn.Parameter(
axis_angle_to_matrix(
torch.tensor(
[
[0.02, 0.02, 0.01],
],
dtype=torch.float32,
)
)[0],
requires_grad=True,
),
)
self.register_parameter(
"focal_length",
nn.Parameter(
torch.tensor(
[
4.8 * 2.0 / 2.0,
],
dtype=torch.float32,
),
requires_grad=True,
),
)
self.cameras = PerspectiveCameras(
# The focal length must be double the size for PyTorch3D because of the NDC
# coordinates spanning a range of two - and they must be normalized by the
# sensor width (see the pulsar example). This means we need here
# 5.0 * 2.0 / 2.0 to get the equivalent results as in pulsar.
#
# R, T and f are provided here, but will be provided again
# at every call to the forward method. The reason are problems
# with PyTorch which makes device placement for gradients problematic
# for tensors which are themselves on a 'gradient path' but not
# leafs in the calculation tree. This will be addressed by an architectural
# change in PyTorch3D in the future. Until then, this workaround is
# recommended.
focal_length=self.focal_length,
R=self.cam_rot[None, ...],
T=self.cam_pos[None, ...],
image_size=((HEIGHT, WIDTH),),
device=DEVICE,
)
raster_settings = PointsRasterizationSettings(
image_size=(HEIGHT, WIDTH),
radius=self.vert_rad,
)
rasterizer = PointsRasterizer(
cameras=self.cameras, raster_settings=raster_settings
)
self.renderer = PulsarPointsRenderer(rasterizer=rasterizer)
def forward(self):
# The Pointclouds object creates copies of it's arguments - that's why
# we have to create a new object in every forward step.
pcl = Pointclouds(
points=self.vert_pos[None, ...], features=self.vert_col[None, ...]
)
return self.renderer(
pcl,
gamma=(self.gamma,),
zfar=(45.0,),
znear=(1.0,),
radius_world=True,
bg_col=torch.ones((3,), dtype=torch.float32, device=DEVICE),
# As mentioned above: workaround for device placement of gradients for
# camera parameters.
focal_length=self.focal_length,
R=self.cam_rot[None, ...],
T=self.cam_pos[None, ...],
)[0]
def cli():
"""
Camera optimization example using pulsar.
Writes to `cam.gif`.
"""
LOGGER.info("Loading reference...")
# Load reference.
ref = (
torch.from_numpy(
imageio.imread(
"../../tests/pulsar/reference/examples_TestRenderer_test_cam.png"
)[:, ::-1, :].copy()
).to(torch.float32)
/ 255.0
).to(DEVICE)
# Set up model.
model = SceneModel().to(DEVICE)
# Optimizer.
optimizer = optim.SGD(
[
{"params": [model.cam_pos], "lr": 1e-4},
{"params": [model.cam_rot], "lr": 5e-6},
# Using a higher lr for the focal length here, because
# the sensor width can not be optimized directly.
{"params": [model.focal_length], "lr": 1e-3},
]
)
LOGGER.info("Writing video to `%s`.", path.abspath("cam-pt3d.gif"))
writer = imageio.get_writer("cam-pt3d.gif", format="gif", fps=25)
# Optimize.
for i in range(300):
optimizer.zero_grad()
result = model()
# Visualize.
result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
cv2.imshow("opt", result_im[:, :, ::-1])
writer.append_data(result_im)
overlay_img = np.ascontiguousarray(
((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
:, :, ::-1
]
)
overlay_img = cv2.putText(
overlay_img,
"Step %d" % (i),
(10, 40),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 0, 0),
2,
cv2.LINE_AA,
False,
)
cv2.imshow("overlay", overlay_img)
cv2.waitKey(1)
# Update.
loss = ((result - ref) ** 2).sum()
LOGGER.info("loss %d: %f", i, loss.item())
loss.backward()
optimizer.step()
writer.close()
LOGGER.info("Done.")
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
cli()
|