Spaces:
Running
Running
File size: 7,308 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""
This example demonstrates multiview 3D reconstruction using the plain
pulsar interface. For this, reference images have been pre-generated
(you can find them at
`../../tests/pulsar/reference/examples_TestRenderer_test_multiview_%d.png`).
The camera parameters are assumed given. The scene is initialized with
random spheres. Gradient-based optimization is used to optimize sphere
parameters and prune spheres to converge to a 3D representation.
This example is not available yet through the 'unified' interface,
because opacity support has not landed in PyTorch3D for general data
structures yet.
"""
import logging
import math
from os import path
import cv2
import imageio
import numpy as np
import torch
from pytorch3d.renderer.points.pulsar import Renderer
from torch import nn, optim
LOGGER = logging.getLogger(__name__)
N_POINTS = 400_000
WIDTH = 1_000
HEIGHT = 1_000
VISUALIZE_IDS = [0, 1]
DEVICE = torch.device("cuda")
class SceneModel(nn.Module):
"""
A simple scene model to demonstrate use of pulsar in PyTorch modules.
The scene model is parameterized with sphere locations (vert_pos),
channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
camera rotation (cam_rot) and sensor focal length and width (cam_sensor).
The forward method of the model renders this scene description. Any
of these parameters could instead be passed as inputs to the forward
method and come from a different model. Optionally, camera parameters can
be provided to the forward method in which case the scene is rendered
using those parameters.
"""
def __init__(self):
super(SceneModel, self).__init__()
self.gamma = 1.0
# Points.
torch.manual_seed(1)
vert_pos = torch.rand((1, N_POINTS, 3), dtype=torch.float32) * 10.0
vert_pos[:, :, 2] += 25.0
vert_pos[:, :, :2] -= 5.0
self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=True))
self.register_parameter(
"vert_col",
nn.Parameter(
torch.ones(1, N_POINTS, 3, dtype=torch.float32) * 0.5,
requires_grad=True,
),
)
self.register_parameter(
"vert_rad",
nn.Parameter(
torch.ones(1, N_POINTS, dtype=torch.float32) * 0.05, requires_grad=True
),
)
self.register_parameter(
"vert_opy",
nn.Parameter(
torch.ones(1, N_POINTS, dtype=torch.float32), requires_grad=True
),
)
self.register_buffer(
"cam_params",
torch.tensor(
[
[
np.sin(angle) * 35.0,
0.0,
30.0 - np.cos(angle) * 35.0,
0.0,
-angle + math.pi,
0.0,
5.0,
2.0,
]
for angle in [-1.5, -0.8, -0.4, -0.1, 0.1, 0.4, 0.8, 1.5]
],
dtype=torch.float32,
),
)
self.renderer = Renderer(WIDTH, HEIGHT, N_POINTS, right_handed_system=True)
def forward(self, cam=None):
if cam is None:
cam = self.cam_params
n_views = 8
else:
n_views = 1
return self.renderer.forward(
self.vert_pos.expand(n_views, -1, -1),
self.vert_col.expand(n_views, -1, -1),
self.vert_rad.expand(n_views, -1),
cam,
self.gamma,
45.0,
)
def cli():
"""
Simple demonstration for a multi-view 3D reconstruction using pulsar.
This example makes use of opacity, which is not yet supported through
the unified PyTorch3D interface.
Writes to `multiview.gif`.
"""
LOGGER.info("Loading reference...")
# Load reference.
ref = torch.stack(
[
torch.from_numpy(
imageio.imread(
"../../tests/pulsar/reference/examples_TestRenderer_test_multiview_%d.png"
% idx
)
).to(torch.float32)
/ 255.0
for idx in range(8)
]
).to(DEVICE)
# Set up model.
model = SceneModel().to(DEVICE)
# Optimizer.
optimizer = optim.SGD(
[
{"params": [model.vert_col], "lr": 1e-1},
{"params": [model.vert_rad], "lr": 1e-3},
{"params": [model.vert_pos], "lr": 1e-3},
]
)
# For visualization.
angle = 0.0
LOGGER.info("Writing video to `%s`.", path.abspath("multiview.avi"))
writer = imageio.get_writer("multiview.gif", format="gif", fps=25)
# Optimize.
for i in range(300):
optimizer.zero_grad()
result = model()
# Visualize.
result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
cv2.imshow("opt", result_im[0, :, :, ::-1])
overlay_img = np.ascontiguousarray(
((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
0, :, :, ::-1
]
)
overlay_img = cv2.putText(
overlay_img,
"Step %d" % (i),
(10, 40),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 0, 0),
2,
cv2.LINE_AA,
False,
)
cv2.imshow("overlay", overlay_img)
cv2.waitKey(1)
# Update.
loss = ((result - ref) ** 2).sum()
LOGGER.info("loss %d: %f", i, loss.item())
loss.backward()
optimizer.step()
# Cleanup.
with torch.no_grad():
model.vert_col.data = torch.clamp(model.vert_col.data, 0.0, 1.0)
# Remove points.
model.vert_pos.data[model.vert_rad < 0.001, :] = -1000.0
model.vert_rad.data[model.vert_rad < 0.001] = 0.0001
vd = (
(model.vert_col - torch.ones(1, 1, 3, dtype=torch.float32).to(DEVICE))
.abs()
.sum(dim=2)
)
model.vert_pos.data[vd <= 0.2] = -1000.0
# Rotating visualization.
cam_control = torch.tensor(
[
[
np.sin(angle) * 35.0,
0.0,
30.0 - np.cos(angle) * 35.0,
0.0,
-angle + math.pi,
0.0,
5.0,
2.0,
]
],
dtype=torch.float32,
).to(DEVICE)
with torch.no_grad():
result = model.forward(cam=cam_control)[0]
result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
cv2.imshow("vis", result_im[:, :, ::-1])
writer.append_data(result_im)
angle += 0.05
writer.close()
LOGGER.info("Done.")
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
cli()
|