Spaces:
Running
Running
File size: 34,015 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659619824914,
"executionStopTime": 1659619825485,
"originalKey": "d38652e8-200a-413c-a36a-f4d349b78a9d",
"requestMsgId": "641de8aa-0e42-4446-9304-c160a2d226bf",
"showInput": true
},
"outputs": [],
"source": [
"# Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"customInput": null,
"originalKey": "a48a9dcf-e80f-474b-a0c4-2c9a765b15c5",
"showInput": false
},
"source": [
"# A simple model using Implicitron\n",
"\n",
"In this demo, we use the VolumeRenderer from PyTorch3D as a custom implicit function in Implicitron. We will see\n",
"* some of the main objects in Implicitron\n",
"* how to plug in a custom part of a model"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"customInput": null,
"originalKey": "51337c0e-ad27-4b75-ad6a-737dca5d7b95",
"showInput": false
},
"source": [
"## 0. Install and import modules\n",
"\n",
"Ensure `torch` and `torchvision` are installed. If `pytorch3d` is not installed, install it using the following cell:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659619898147,
"executionStopTime": 1659619898274,
"originalKey": "76f1ecd4-6b73-4214-81b0-118ef8d86872",
"requestMsgId": "deb6a860-6923-4227-abef-d31388b5142d",
"showInput": true
},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"customInput": null,
"originalKey": "2c1020e6-eb4a-4644-9719-9147500d8e4f",
"showInput": false
},
"source": [
"Ensure omegaconf and visdom are installed. If not, run this cell. (It should not be necessary to restart the runtime.)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"customInput": null,
"customOutput": null,
"originalKey": "9e751931-a38d-44c9-9ff1-ac2f7d3a3f99",
"showInput": true
},
"outputs": [],
"source": [
"!pip install omegaconf visdom"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customOutput": null,
"executionStartTime": 1659612480556,
"executionStopTime": 1659612480644,
"hidden_ranges": [],
"originalKey": "86807e4a-1675-4520-a033-c7af85b233ec",
"requestMsgId": "880a7e20-4a90-4b37-a5eb-bccc0b23cac6"
},
"outputs": [],
"source": [
"import logging\n",
"from typing import Tuple\n",
"\n",
"import matplotlib.animation as animation\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import torch\n",
"import tqdm\n",
"from IPython.display import HTML\n",
"from omegaconf import OmegaConf\n",
"from PIL import Image\n",
"from pytorch3d.implicitron.dataset.dataset_base import FrameData\n",
"from pytorch3d.implicitron.dataset.rendered_mesh_dataset_map_provider import RenderedMeshDatasetMapProvider\n",
"from pytorch3d.implicitron.models.generic_model import GenericModel\n",
"from pytorch3d.implicitron.models.implicit_function.base import ImplicitFunctionBase, ImplicitronRayBundle\n",
"from pytorch3d.implicitron.models.renderer.base import EvaluationMode\n",
"from pytorch3d.implicitron.tools.config import get_default_args, registry, remove_unused_components\n",
"from pytorch3d.renderer.implicit.renderer import VolumeSampler\n",
"from pytorch3d.structures import Volumes\n",
"from pytorch3d.vis.plotly_vis import plot_batch_individually, plot_scene"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659610929375,
"executionStopTime": 1659610929383,
"hidden_ranges": [],
"originalKey": "b2d9f5bd-a9d4-4f78-b21e-92f2658e0fe9",
"requestMsgId": "7e43e623-4030-438b-af4e-b96170c9a052",
"showInput": true
},
"outputs": [],
"source": [
"output_resolution = 80"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659610930042,
"executionStopTime": 1659610930050,
"hidden_ranges": [],
"originalKey": "0b0c2087-4c86-4c57-b0ee-6f48a70a9c78",
"requestMsgId": "46883aad-f00b-4fd4-ac17-eec0b2ac272a",
"showInput": true
},
"outputs": [],
"source": [
"torch.set_printoptions(sci_mode=False)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"customInput": null,
"originalKey": "37809d0d-b02e-42df-85b6-cdd038373653",
"showInput": false
},
"source": [
"## 1. Load renders of a mesh (the cow mesh) as a dataset\n",
"\n",
"A dataset's train, val andΒ test parts in Implicitron are represented as a `dataset_map`, and provided by an implementation of `DatasetMapProvider`. \n",
"`RenderedMeshDatasetMapProvider` is one which generates a single-scene dataset with only a train component by taking a mesh and rendering it.\n",
"We use it with the cow mesh."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659620739780,
"executionStopTime": 1659620739914,
"originalKey": "cc68cb9c-b8bf-4e9e-bef1-2cfafdf6caa2",
"requestMsgId": "398cfcae-5d43-4b6f-9c75-db3d297364d4",
"showInput": false
},
"source": [
"If running this notebook using **Google Colab**, run the following cell to fetch the mesh obj and texture files and save it at the path data/cow_mesh.\n",
"If running locally, the data is already available at the correct path."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"customInput": null,
"customOutput": null,
"originalKey": "2c55e002-a885-4169-8fdc-af9078b05968",
"showInput": true
},
"outputs": [],
"source": [
"!mkdir -p data/cow_mesh\n",
"!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.obj\n",
"!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.mtl\n",
"!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow_texture.png"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customOutput": null,
"executionStartTime": 1659621652237,
"executionStopTime": 1659621652903,
"hidden_ranges": [],
"originalKey": "eb77aaec-048c-40bd-bd69-0e66b6ab60b1",
"requestMsgId": "09b9975c-ff86-41c9-b4a9-975d23afc562",
"showInput": true
},
"outputs": [],
"source": [
"cow_provider = RenderedMeshDatasetMapProvider(\n",
" data_file=\"data/cow_mesh/cow.obj\",\n",
" use_point_light=False,\n",
" resolution=output_resolution,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659610966145,
"executionStopTime": 1659610966255,
"hidden_ranges": [],
"originalKey": "8210e15b-da48-4306-a49a-41c4e7e7d42f",
"requestMsgId": "c243edd2-a106-4fba-8471-dfa4f99a2088",
"showInput": true
},
"outputs": [],
"source": [
"dataset_map = cow_provider.get_dataset_map()\n",
"tr_cameras = [training_frame.camera for training_frame in dataset_map.train]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659610967703,
"executionStopTime": 1659610967848,
"hidden_ranges": [],
"originalKey": "458d72ad-d9a7-4f13-b5b7-90d2aec61c16",
"requestMsgId": "7f9431f3-8717-4d89-a7fe-1420dd0e00c4",
"showInput": true
},
"outputs": [],
"source": [
"# The cameras are all in the XZ plane, in a circle about 2.7 from the origin\n",
"centers = torch.cat([i.get_camera_center() for i in tr_cameras])\n",
"print(centers.min(0).values)\n",
"print(centers.max(0).values)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659552920194,
"executionStopTime": 1659552923122,
"hidden_ranges": [],
"originalKey": "931e712b-b141-437a-97fb-dc2a07ce3458",
"requestMsgId": "931e712b-b141-437a-97fb-dc2a07ce3458",
"showInput": true
},
"outputs": [],
"source": [
"# visualization of the cameras\n",
"plot = plot_scene({\"k\": {i: camera for i, camera in enumerate(tr_cameras)}}, camera_scale=0.25)\n",
"plot.layout.scene.aspectmode = \"data\"\n",
"plot"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"customInput": null,
"originalKey": "afa9c02d-f76b-4f68-83e9-9733c615406b",
"showInput": false
},
"source": [
"## 2. Custom implicit function π§\n",
"\n",
"At the core of neural rendering methods are functions of spatial coordinates called implicit functions, which are used in some kind of rendering process.\n",
"(Often those functions can additionally take other data as well, such as view direction.)\n",
"A common rendering process is ray marching over densities and colors provided by an implicit function.\n",
"In our case, taking samples from a 3D volume grid is a very simple function of spatial coordinates. \n",
"\n",
"Here we define our own implicit function, which uses PyTorch3D's existing functionality for sampling from a volume grid.\n",
"We do this by subclassing `ImplicitFunctionBase`.\n",
"We need to register our subclass with a special decorator.\n",
"We use Python's dataclass annotations for configuring the module."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659613575850,
"executionStopTime": 1659613575940,
"hidden_ranges": [],
"originalKey": "61b55043-dc52-4de7-992e-e2195edd2123",
"requestMsgId": "dfaace3c-098c-4ffe-9240-6a7ae0ff271e",
"showInput": true
},
"outputs": [],
"source": [
"@registry.register\n",
"class MyVolumes(ImplicitFunctionBase, torch.nn.Module):\n",
" grid_resolution: int = 50 # common HWD of volumes, the number of voxels in each direction\n",
" extent: float = 1.0 # In world coordinates, the volume occupies is [-extent, extent] along each axis\n",
"\n",
" def __post_init__(self):\n",
" # We have to call this explicitly if there are other base classes like Module\n",
" super().__init__()\n",
"\n",
" # We define parameters like other torch.nn.Module objects.\n",
" # In this case, both our parameter tensors are trainable; they govern the contents of the volume grid.\n",
" density = torch.full((self.grid_resolution, self.grid_resolution, self.grid_resolution), -2.0)\n",
" self.density = torch.nn.Parameter(density)\n",
" color = torch.full((3, self.grid_resolution, self.grid_resolution, self.grid_resolution), 0.0)\n",
" self.color = torch.nn.Parameter(color)\n",
" self.density_activation = torch.nn.Softplus()\n",
"\n",
" def forward(\n",
" self,\n",
" ray_bundle: ImplicitronRayBundle,\n",
" fun_viewpool=None,\n",
" global_code=None,\n",
" ):\n",
" densities = self.density_activation(self.density[None, None])\n",
" voxel_size = 2.0 * float(self.extent) / self.grid_resolution\n",
" features = self.color.sigmoid()[None]\n",
"\n",
" # Like other PyTorch3D structures, the actual Volumes object should only exist as long\n",
" # as one iteration of training. It is local to this function.\n",
"\n",
" volume = Volumes(densities=densities, features=features, voxel_size=voxel_size)\n",
" sampler = VolumeSampler(volumes=volume)\n",
" densities, features = sampler(ray_bundle)\n",
"\n",
" # When an implicit function is used for raymarching, i.e. for MultiPassEmissionAbsorptionRenderer,\n",
" # it must return (densities, features, an auxiliary tuple)\n",
" return densities, features, {}\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"customInput": null,
"originalKey": "abaf2cd6-1b68-400e-a142-8fb9f49953f3",
"showInput": false
},
"source": [
"## 3. Construct the model object.\n",
"\n",
"The main model object in PyTorch3D is `GenericModel`, which has pluggable components for the major steps, including the renderer and the implicit function(s).\n",
"There are two ways to construct it which are equivalent here."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659621267561,
"executionStopTime": 1659621267938,
"originalKey": "f26c3dce-fbae-4592-bd0e-e4a8abc57c2c",
"requestMsgId": "9213687e-1caf-46a8-a4e5-a9c531530092",
"showInput": true
},
"outputs": [],
"source": [
"CONSTRUCT_MODEL_FROM_CONFIG = True\n",
"if CONSTRUCT_MODEL_FROM_CONFIG:\n",
" # Via a DictConfigΒ - this is how our training loop with hydra works\n",
" cfg = get_default_args(GenericModel)\n",
" cfg.implicit_function_class_type = \"MyVolumes\"\n",
" cfg.render_image_height=output_resolution\n",
" cfg.render_image_width=output_resolution\n",
" cfg.loss_weights={\"loss_rgb_huber\": 1.0}\n",
" cfg.tqdm_trigger_threshold=19000\n",
" cfg.raysampler_AdaptiveRaySampler_args.scene_extent= 4.0\n",
" gm = GenericModel(**cfg)\n",
"else:\n",
" # constructing GenericModel directly\n",
" gm = GenericModel(\n",
" implicit_function_class_type=\"MyVolumes\",\n",
" render_image_height=output_resolution,\n",
" render_image_width=output_resolution,\n",
" loss_weights={\"loss_rgb_huber\": 1.0},\n",
" tqdm_trigger_threshold=19000,\n",
" raysampler_AdaptiveRaySampler_args = {\"scene_extent\": 4.0}\n",
" )\n",
"\n",
" # In this case we can get the equivalent DictConfig cfg object to the way gm is configured as follows\n",
" cfg = OmegaConf.structured(gm)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"code_folding": [],
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659611214689,
"executionStopTime": 1659611214748,
"hidden_ranges": [],
"originalKey": "4e659f7d-ce66-4999-83de-005eb09d7705",
"requestMsgId": "7b815b2b-cf19-44d0-ae89-76fde6df35ec",
"showInput": false
},
"source": [
" The default renderer is an emission-absorbtion raymarcher. We keep that default."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659621268007,
"executionStopTime": 1659621268190,
"hidden_ranges": [],
"originalKey": "d37ae488-c57c-44d3-9def-825dc1a6495b",
"requestMsgId": "71143ec1-730f-4876-8a14-e46eea9d6dd1",
"showInput": true
},
"outputs": [],
"source": [
"# We can display the configuration in use as follows.\n",
"remove_unused_components(cfg)\n",
"yaml = OmegaConf.to_yaml(cfg, sort_keys=False)\n",
"%page -r yaml"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659621268727,
"executionStopTime": 1659621268776,
"hidden_ranges": [],
"originalKey": "52e53179-3c6e-4c1f-a38a-3a6d803687bb",
"requestMsgId": "05de9bc3-3f74-4a6f-851c-9ec919b59506",
"showInput": true
},
"outputs": [],
"source": [
"device = torch.device(\"cuda:0\")\n",
"gm.to(device)\n",
"assert next(gm.parameters()).is_cuda"
]
},
{
"cell_type": "markdown",
"metadata": {
"customInput": null,
"originalKey": "528a7d53-c645-49c2-9021-09adbb18cd23",
"showInput": false
},
"source": [
"## 4. train the model "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659621270236,
"executionStopTime": 1659621270446,
"hidden_ranges": [],
"originalKey": "953280bd-3161-42ba-8dcb-0c8ef2d5cc25",
"requestMsgId": "9bba424b-7bfd-4e5a-9d79-ae316e20bab0",
"showInput": true
},
"outputs": [],
"source": [
"train_data_collated = [FrameData.collate([frame.to(device)]) for frame in dataset_map.train]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659621270815,
"executionStopTime": 1659621270948,
"hidden_ranges": [],
"originalKey": "2fcf07f0-0c28-49c7-8c76-1c9a9d810167",
"requestMsgId": "821deb43-6084-4ece-83c3-dee214562c47",
"showInput": true
},
"outputs": [],
"source": [
"gm.train()\n",
"optimizer = torch.optim.Adam(gm.parameters(), lr=0.1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customOutput": null,
"executionStartTime": 1659621271875,
"executionStopTime": 1659621298146,
"hidden_ranges": [],
"originalKey": "105099f7-ed0c-4e7f-a976-61a93fd0a8fe",
"requestMsgId": "0c87c108-83e3-4129-ad02-85e0140f1368",
"showInput": true
},
"outputs": [],
"source": [
"iterator = tqdm.tqdm(range(2000))\n",
"for n_batch in iterator:\n",
" optimizer.zero_grad()\n",
"\n",
" frame = train_data_collated[n_batch % len(dataset_map.train)]\n",
" out = gm(**frame, evaluation_mode=EvaluationMode.TRAINING)\n",
" out[\"objective\"].backward()\n",
" if n_batch % 100 == 0:\n",
" iterator.set_postfix_str(f\"loss: {float(out['objective']):.5f}\")\n",
" optimizer.step()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659535024768,
"executionStopTime": 1659535024906,
"originalKey": "e3cd494a-536b-48bc-8290-c048118c82eb",
"requestMsgId": "e3cd494a-536b-48bc-8290-c048118c82eb",
"showInput": false
},
"source": [
"## 5. Evaluate the module\n",
"\n",
"We generate complete images from all the viewpoints to see how they look."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659621299859,
"executionStopTime": 1659621311133,
"hidden_ranges": [],
"originalKey": "fbe1b2ea-cc24-4b20-a2d7-0249185e34a5",
"requestMsgId": "771ef1f8-5eee-4932-9e81-33604bf0512a",
"showInput": true
},
"outputs": [],
"source": [
"def to_numpy_image(image):\n",
" # Takes an image of shape (C, H, W) in [0,1], where C=3 or 1\n",
" # to a numpy uint image of shape (H, W, 3)\n",
" return (image * 255).to(torch.uint8).permute(1, 2, 0).detach().cpu().expand(-1, -1, 3).numpy()\n",
"def resize_image(image):\n",
" # Takes images of shape (B, C, H, W) to (B, C, output_resolution, output_resolution)\n",
" return torch.nn.functional.interpolate(image, size=(output_resolution, output_resolution))\n",
"\n",
"gm.eval()\n",
"images = []\n",
"expected = []\n",
"masks = []\n",
"masks_expected = []\n",
"for frame in tqdm.tqdm(train_data_collated):\n",
" with torch.no_grad():\n",
" out = gm(**frame, evaluation_mode=EvaluationMode.EVALUATION)\n",
"\n",
" image_rgb = to_numpy_image(out[\"images_render\"][0])\n",
" mask = to_numpy_image(out[\"masks_render\"][0])\n",
" expd = to_numpy_image(resize_image(frame.image_rgb)[0])\n",
" mask_expected = to_numpy_image(resize_image(frame.fg_probability)[0])\n",
"\n",
" images.append(image_rgb)\n",
" masks.append(mask)\n",
" expected.append(expd)\n",
" masks_expected.append(mask_expected)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659614622542,
"executionStopTime": 1659614622757,
"originalKey": "24953039-9780-40fd-bd81-5d63e9f40069",
"requestMsgId": "7af895a3-dfe4-4c28-ac3b-4ff0fbb40c7f",
"showInput": false
},
"source": [
"We draw a grid showing predicted image and expected image, followed by predicted mask and expected mask, from each viewpoint. \n",
"This is a grid of four rows of images, wrapped in to several large rows, i.e..\n",
"<small><center>\n",
"```\n",
"ββββββββββ¬βββββββββ ββββββββββ\n",
"βpred βpred β βpred β\n",
"βimage βimage β βimage β\n",
"β1 β2 β βn β\n",
"ββββββββββΌβββββββββ€ ββββββββββ€\n",
"βexpectedβexpectedβ βexpectedβ\n",
"βimage βimage β ... βimage β\n",
"β1 β2 β βn β\n",
"ββββββββββΌβββββββββ€ ββββββββββ€\n",
"βpred βpred β βpred β\n",
"βmask βmask β βmask β\n",
"β1 β2 β βn β\n",
"ββββββββββΌβββββββββ€ ββββββββββ€\n",
"βexpectedβexpectedβ βexpectedβ\n",
"βmask βmask β βmask β\n",
"β1 β2 β βn β\n",
"ββββββββββΌβββββββββ€ ββββββββββ€\n",
"βpred βpred β βpred β\n",
"βimage βimage β βimage β\n",
"βn+1 βn+1 β β2n β\n",
"ββββββββββΌβββββββββ€ ββββββββββ€\n",
"βexpectedβexpectedβ βexpectedβ\n",
"βimage βimage β ... βimage β\n",
"βn+1 βn+2 β β2n β\n",
"ββββββββββΌβββββββββ€ ββββββββββ€\n",
"βpred βpred β βpred β\n",
"βmask βmask β βmask β\n",
"βn+1 βn+2 β β2n β\n",
"ββββββββββΌβββββββββ€ ββββββββββ€\n",
"βexpectedβexpectedβ βexpectedβ\n",
"βmask βmask β βmask β\n",
"βn+1 βn+2 β β2n β\n",
"ββββββββββ΄βββββββββ ββββββββββ\n",
" ...\n",
"```\n",
"</center></small>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659621313894,
"executionStopTime": 1659621314042,
"hidden_ranges": [],
"originalKey": "c488a34a-e46d-4649-93fb-4b1bb5a0e439",
"requestMsgId": "4221e632-fca1-4fe5-b2e3-f92c37aa40e4",
"showInput": true
},
"outputs": [],
"source": [
"images_to_display = [images.copy(), expected.copy(), masks.copy(), masks_expected.copy()]\n",
"n_rows = 4\n",
"n_images = len(images)\n",
"blank_image = images[0] * 0\n",
"n_per_row = 1+(n_images-1)//n_rows\n",
"for _ in range(n_per_row*n_rows - n_images):\n",
" for group in images_to_display:\n",
" group.append(blank_image)\n",
"\n",
"images_to_display_listed = [[[i] for i in j] for j in images_to_display]\n",
"split = []\n",
"for row in range(n_rows):\n",
" for group in images_to_display_listed:\n",
" split.append(group[row*n_per_row:(row+1)*n_per_row]) \n",
"\n",
"Image.fromarray(np.block(split))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659621323795,
"executionStopTime": 1659621323820,
"hidden_ranges": [],
"originalKey": "49eab9e1-4fe2-4fbe-b4f3-7b6953340170",
"requestMsgId": "85b402ad-f903-431f-a13e-c2d697e869bb",
"showInput": true
},
"outputs": [],
"source": [
"# Print the maximum channel intensity in the first image.\n",
"print(images[1].max()/255)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659621408642,
"executionStopTime": 1659621409559,
"hidden_ranges": [],
"originalKey": "137d2c43-d39d-4266-ac5e-2b714da5e0ee",
"requestMsgId": "8e27ec57-c2d6-4ae0-be69-b63b6af929ff",
"showInput": true
},
"outputs": [],
"source": [
"plt.ioff()\n",
"fig, ax = plt.subplots(figsize=(3,3))\n",
"\n",
"ax.grid(None)\n",
"ims = [[ax.imshow(im, animated=True)] for im in images]\n",
"ani = animation.ArtistAnimation(fig, ims, interval=80, blit=True)\n",
"ani_html = ani.to_jshtml()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659621409620,
"executionStopTime": 1659621409725,
"originalKey": "783e70d6-7cf1-4d76-a126-ba11ffc2f5be",
"requestMsgId": "b6843506-c5fa-4508-80fc-8ecae51a934a",
"showInput": true
},
"outputs": [],
"source": [
"HTML(ani_html)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"customInput": null,
"customOutput": null,
"executionStartTime": 1659614670081,
"executionStopTime": 1659614670168,
"originalKey": "0286c350-2362-4f47-8181-2fc2ba51cfcf",
"requestMsgId": "976f4db9-d4c7-466c-bcfd-218234400226",
"showInput": true
},
"outputs": [],
"source": [
"# If you want to see the output of the model with the volume forced to opaque white, run this and re-evaluate\n",
"# with torch.no_grad():\n",
"# gm._implicit_functions[0]._fn.density.fill_(9.0)\n",
"# gm._implicit_functions[0]._fn.color.fill_(9.0)\n"
]
}
],
"metadata": {
"bento_stylesheets": {
"bento/extensions/flow/main.css": true,
"bento/extensions/kernel_selector/main.css": true,
"bento/extensions/kernel_ui/main.css": true,
"bento/extensions/new_kernel/main.css": true,
"bento/extensions/system_usage/main.css": true,
"bento/extensions/theme/main.css": true
},
"captumWidgetMessage": {},
"dataExplorerConfig": {},
"kernelspec": {
"display_name": "pytorch3d",
"language": "python",
"metadata": {
"cinder_runtime": false,
"fbpkg_supported": true,
"is_prebuilt": true,
"kernel_name": "bento_kernel_pytorch3d",
"nightly_builds": true
},
"name": "bento_kernel_pytorch3d"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3"
},
"last_base_url": "https://9177.od.fbinfra.net:443/",
"last_kernel_id": "bb33cd83-7924-489a-8bd8-2d9d62eb0126",
"last_msg_id": "99f7088e-d22b355b859660479ef0574e_5743",
"last_server_session_id": "2944b203-9ea8-4c0e-9634-645dfea5f26b",
"outputWidgetContext": {}
},
"nbformat": 4,
"nbformat_minor": 2
}
|