Spaces:
Running
Running
File size: 15,013 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Render DensePose \n",
"\n",
"DensePose refers to dense human pose representation: https://github.com/facebookresearch/DensePose. \n",
"In this tutorial, we provide an example of using DensePose data in PyTorch3D.\n",
"\n",
"This tutorial shows how to:\n",
"- load a mesh and textures from densepose `.mat` and `.pkl` files\n",
"- set up a renderer \n",
"- render the mesh \n",
"- vary the rendering settings such as lighting and camera position"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Bnj3THhzfBLf"
},
"source": [
"## Import modules"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ensure `torch` and `torchvision` are installed. If `pytorch3d` is not installed, install it using the following cell:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# We also install chumpy as it is needed to load the SMPL model pickle file.\n",
"!pip install chumpy"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import torch\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"# libraries for reading data from files\n",
"from scipy.io import loadmat\n",
"from PIL import Image\n",
"import pickle\n",
"\n",
"# Data structures and functions for rendering\n",
"from pytorch3d.structures import Meshes\n",
"from pytorch3d.renderer import (\n",
" look_at_view_transform,\n",
" FoVPerspectiveCameras, \n",
" PointLights, \n",
" DirectionalLights, \n",
" Materials, \n",
" RasterizationSettings, \n",
" MeshRenderer, \n",
" MeshRasterizer, \n",
" SoftPhongShader,\n",
" TexturesUV\n",
")\n",
"\n",
"# add path for demo utils functions \n",
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(''))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load the SMPL model\n",
"\n",
"#### Download the SMPL model\n",
"- Go to https://smpl.is.tue.mpg.de/download.php and sign up.\n",
"- Download SMPL for Python Users and unzip.\n",
"- Copy the file male template file **'models/basicModel_m_lbs_10_207_0_v1.0.0.pkl'** to the data/DensePose/ folder.\n",
" - rename the file to **'smpl_model.pkl'** or rename the string where it's commented below\n",
" \n",
"If running this notebook using Google Colab, run the following cell to fetch the texture and UV values and save it at the correct path."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Texture image\n",
"!wget -P data/DensePose https://raw.githubusercontent.com/facebookresearch/DensePose/master/DensePoseData/demo_data/texture_from_SURREAL.png\n",
"\n",
"# UV_processed.mat\n",
"!wget https://dl.fbaipublicfiles.com/densepose/densepose_uv_data.tar.gz\n",
"!tar xvf densepose_uv_data.tar.gz -C data/DensePose\n",
"!rm densepose_uv_data.tar.gz"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Load our texture UV data and our SMPL data, with some processing to correct data values and format."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Setup\n",
"if torch.cuda.is_available():\n",
" device = torch.device(\"cuda:0\")\n",
" torch.cuda.set_device(device)\n",
"else:\n",
" device = torch.device(\"cpu\")\n",
" \n",
"# Set paths\n",
"DATA_DIR = \"./data\"\n",
"data_filename = os.path.join(DATA_DIR, \"DensePose/UV_Processed.mat\")\n",
"tex_filename = os.path.join(DATA_DIR,\"DensePose/texture_from_SURREAL.png\")\n",
"# rename your .pkl file or change this string\n",
"verts_filename = os.path.join(DATA_DIR, \"DensePose/smpl_model.pkl\")\n",
"\n",
"\n",
"# Load SMPL and texture data\n",
"with open(verts_filename, 'rb') as f:\n",
" data = pickle.load(f, encoding='latin1') \n",
" v_template = torch.Tensor(data['v_template']).to(device) # (6890, 3)\n",
"ALP_UV = loadmat(data_filename)\n",
"with Image.open(tex_filename) as image:\n",
" np_image = np.asarray(image.convert(\"RGB\")).astype(np.float32)\n",
"tex = torch.from_numpy(np_image / 255.)[None].to(device)\n",
"\n",
"verts = torch.from_numpy((ALP_UV[\"All_vertices\"]).astype(int)).squeeze().to(device) # (7829,)\n",
"U = torch.Tensor(ALP_UV['All_U_norm']).to(device) # (7829, 1)\n",
"V = torch.Tensor(ALP_UV['All_V_norm']).to(device) # (7829, 1)\n",
"faces = torch.from_numpy((ALP_UV['All_Faces'] - 1).astype(int)).to(device) # (13774, 3)\n",
"face_indices = torch.Tensor(ALP_UV['All_FaceIndices']).squeeze() # (13774,)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Display the texture image\n",
"plt.figure(figsize=(10, 10))\n",
"plt.imshow(tex.squeeze(0).cpu())\n",
"plt.axis(\"off\");"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In DensePose, the body mesh is split into 24 parts. In the texture image, we can see the 24 parts are separated out into individual (200, 200) images per body part. The convention in DensePose is that each face in the mesh is associated with a body part (given by the face_indices tensor above). The vertex UV values (in the range [0, 1]) for each face are specific to the (200, 200) size texture map for the part of the body that the mesh face corresponds to. We cannot use them directly with the entire texture map. We have to offset the vertex UV values depending on what body part the associated face corresponds to."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Map each face to a (u, v) offset\n",
"offset_per_part = {}\n",
"already_offset = set()\n",
"cols, rows = 4, 6\n",
"for i, u in enumerate(np.linspace(0, 1, cols, endpoint=False)):\n",
" for j, v in enumerate(np.linspace(0, 1, rows, endpoint=False)):\n",
" part = rows * i + j + 1 # parts are 1-indexed in face_indices\n",
" offset_per_part[part] = (u, v)\n",
"\n",
"U_norm = U.clone()\n",
"V_norm = V.clone()\n",
"\n",
"# iterate over faces and offset the corresponding vertex u and v values\n",
"for i in range(len(faces)):\n",
" face_vert_idxs = faces[i]\n",
" part = face_indices[i]\n",
" offset_u, offset_v = offset_per_part[int(part.item())]\n",
" \n",
" for vert_idx in face_vert_idxs: \n",
" # vertices are reused, but we don't want to offset multiple times\n",
" if vert_idx.item() not in already_offset:\n",
" # offset u value\n",
" U_norm[vert_idx] = U[vert_idx] / cols + offset_u\n",
" # offset v value\n",
" # this also flips each part locally, as each part is upside down\n",
" V_norm[vert_idx] = (1 - V[vert_idx]) / rows + offset_v\n",
" # add vertex to our set tracking offsetted vertices\n",
" already_offset.add(vert_idx.item())\n",
"\n",
"# invert V values\n",
"V_norm = 1 - V_norm"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# create our verts_uv values\n",
"verts_uv = torch.cat([U_norm[None],V_norm[None]], dim=2) # (1, 7829, 2)\n",
"\n",
"# There are 6890 xyz vertex coordinates but 7829 vertex uv coordinates. \n",
"# This is because the same vertex can be shared by multiple faces where each face may correspond to a different body part. \n",
"# Therefore when initializing the Meshes class,\n",
"# we need to map each of the vertices referenced by the DensePose faces (in verts, which is the \"All_vertices\" field)\n",
"# to the correct xyz coordinate in the SMPL template mesh.\n",
"v_template_extended = v_template[verts-1][None] # (1, 7829, 3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create our textured mesh \n",
"\n",
"**Meshes** is a unique datastructure provided in PyTorch3D for working with batches of meshes of different sizes.\n",
"\n",
"**TexturesUV** is an auxiliary datastructure for storing vertex uv and texture maps for meshes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"texture = TexturesUV(maps=tex, faces_uvs=faces[None], verts_uvs=verts_uv)\n",
"mesh = Meshes(v_template_extended, faces[None], texture)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a renderer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Initialize a camera.\n",
"# World coordinates +Y up, +X left and +Z in.\n",
"R, T = look_at_view_transform(2.7, 0, 0) \n",
"cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
"\n",
"# Define the settings for rasterization and shading. Here we set the output image to be of size\n",
"# 512x512. As we are rendering images for visualization purposes only we will set faces_per_pixel=1\n",
"# and blur_radius=0.0. \n",
"raster_settings = RasterizationSettings(\n",
" image_size=512, \n",
" blur_radius=0.0, \n",
" faces_per_pixel=1, \n",
")\n",
"\n",
"# Place a point light in front of the person. \n",
"lights = PointLights(device=device, location=[[0.0, 0.0, 2.0]])\n",
"\n",
"# Create a Phong renderer by composing a rasterizer and a shader. The textured Phong shader will \n",
"# interpolate the texture uv coordinates for each vertex, sample from a texture image and \n",
"# apply the Phong lighting model\n",
"renderer = MeshRenderer(\n",
" rasterizer=MeshRasterizer(\n",
" cameras=cameras, \n",
" raster_settings=raster_settings\n",
" ),\n",
" shader=SoftPhongShader(\n",
" device=device, \n",
" cameras=cameras,\n",
" lights=lights\n",
" )\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Render the textured mesh we created from the SMPL model and texture map."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"images = renderer(mesh)\n",
"plt.figure(figsize=(10, 10))\n",
"plt.imshow(images[0, ..., :3].cpu().numpy())\n",
"plt.axis(\"off\");"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Different view and lighting of the body\n",
"\n",
"We can also change many other settings in the rendering pipeline. Here we:\n",
"\n",
"- change the **viewing angle** of the camera\n",
"- change the **position** of the point light"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Rotate the person by increasing the elevation and azimuth angles to view the back of the person from above. \n",
"R, T = look_at_view_transform(2.7, 10, 180)\n",
"cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
"\n",
"# Move the light location so the light is shining on the person's back. \n",
"lights.location = torch.tensor([[2.0, 2.0, -2.0]], device=device)\n",
"\n",
"# Re render the mesh, passing in keyword arguments for the modified components.\n",
"images = renderer(mesh, lights=lights, cameras=cameras)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(10, 10))\n",
"plt.imshow(images[0, ..., :3].cpu().numpy())\n",
"plt.axis(\"off\");"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Conclusion\n",
"In this tutorial, we've learned how to construct a **textured mesh** from **DensePose model and uv data**, as well as initialize a **Renderer** and change the viewing angle and lighting of our rendered mesh."
]
}
],
"metadata": {
"bento_stylesheets": {
"bento/extensions/flow/main.css": true,
"bento/extensions/kernel_selector/main.css": true,
"bento/extensions/kernel_ui/main.css": true,
"bento/extensions/new_kernel/main.css": true,
"bento/extensions/system_usage/main.css": true,
"bento/extensions/theme/main.css": true
},
"kernelspec": {
"display_name": "pytorch3d_etc (local)",
"language": "python",
"name": "pytorch3d_etc_local"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.5+"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|