File size: 2,037 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D  # noqa: F401 unused import
from pytorch3d.vis.plotly_vis import get_camera_wireframe


def plot_cameras(ax, cameras, color: str = "blue"):
    """
    Plots a set of `cameras` objects into the maplotlib axis `ax` with
    color `color`.
    """
    cam_wires_canonical = get_camera_wireframe().cuda()[None]
    cam_trans = cameras.get_world_to_view_transform().inverse()
    cam_wires_trans = cam_trans.transform_points(cam_wires_canonical)
    plot_handles = []
    for wire in cam_wires_trans:
        # the Z and Y axes are flipped intentionally here!
        x_, z_, y_ = wire.detach().cpu().numpy().T.astype(float)
        (h,) = ax.plot(x_, y_, z_, color=color, linewidth=0.3)
        plot_handles.append(h)
    return plot_handles


def plot_camera_scene(cameras, cameras_gt, status: str):
    """
    Plots a set of predicted cameras `cameras` and their corresponding
    ground truth locations `cameras_gt`. The plot is named with
    a string passed inside the `status` argument.
    """
    fig = plt.figure()
    ax = fig.add_subplot(projection="3d")
    ax.clear()
    ax.set_title(status)
    handle_cam = plot_cameras(ax, cameras, color="#FF7D1E")
    handle_cam_gt = plot_cameras(ax, cameras_gt, color="#812CE5")
    plot_radius = 3
    ax.set_xlim3d([-plot_radius, plot_radius])
    ax.set_ylim3d([3 - plot_radius, 3 + plot_radius])
    ax.set_zlim3d([-plot_radius, plot_radius])
    ax.set_xlabel("x")
    ax.set_ylabel("z")
    ax.set_zlabel("y")
    labels_handles = {
        "Estimated cameras": handle_cam[0],
        "GT cameras": handle_cam_gt[0],
    }
    ax.legend(
        labels_handles.values(),
        labels_handles.keys(),
        loc="upper center",
        bbox_to_anchor=(0.5, 0),
    )
    plt.show()
    return fig