File size: 22,338 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# Introduction

Implicitron is a PyTorch3D-based framework for new-view synthesis via modeling the neural-network based representations.

# License

Implicitron is distributed as part of PyTorch3D under the [BSD license](https://github.com/facebookresearch/pytorch3d/blob/main/LICENSE).
It includes code from the [NeRF](https://github.com/bmild/nerf), [SRN](http://github.com/vsitzmann/scene-representation-networks) and [IDR](http://github.com/lioryariv/idr) repos.
See [LICENSE-3RD-PARTY](https://github.com/facebookresearch/pytorch3d/blob/main/LICENSE-3RD-PARTY) for their licenses.


# Installation

There are three ways to set up Implicitron, depending on the flexibility level required.
If you only want to train or evaluate models as they are implemented changing only the parameters, you can just install the package.
Implicitron also provides a flexible API that supports user-defined plug-ins;
if you want to re-implement some of the components without changing the high-level pipeline, you need to create a custom launcher script.
The most flexible option, though, is cloning PyTorch3D repo and building it from sources, which allows changing the code in arbitrary ways.
Below, we descibe all three options in more details.


## [Option 1] Running an executable from the package

This option allows you to use the code as is without changing the implementations.
Only configuration can be changed (see [Configuration system](#configuration-system)).

For this setup, install the dependencies and PyTorch3D from conda following [the guide](https://github.com/facebookresearch/pytorch3d/blob/master/INSTALL.md#1-install-with-cuda-support-from-anaconda-cloud-on-linux-only). Then, install implicitron-specific dependencies:

```shell
pip install "hydra-core>=1.1" visdom lpips matplotlib accelerate
```

Runner executable is available as `pytorch3d_implicitron_runner` shell command.
See [Running](#running) section below for examples of training and evaluation commands.


## [Option 2] Supporting custom implementations

To plug in custom implementations, for example, of renderer or implicit-function protocols, you need to create your own runner script and import the plug-in implementations there.
First, install PyTorch3D and Implicitron dependencies as described in the previous section.
Then, implement the custom script; copying `pytorch3d/projects/implicitron_trainer` is a good place to start.
See [Custom plugins](#custom-plugins) for more information on how to import implementations and enable them in the configs.


## [Option 3] Cloning PyTorch3D repo

This is the most flexible way to set up Implicitron as it allows changing the code directly.
It allows modifying the high-level rendering pipeline or implementing yet-unsupported loss functions.
Please follow the instructions to [install PyTorch3D from a local clone](https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md#2-install-from-a-local-clone).
Then, install Implicitron-specific dependencies:

```shell
pip install "hydra-core>=1.1" visdom lpips matplotlib accelerate
```

You are still encouraged to implement custom plugins as above where possible as it makes reusing the code easier.
The executable is located in `pytorch3d/projects/implicitron_trainer`.

> **_NOTE:_**  Both `pytorch3d_implicitron_runner` and `pytorch3d_implicitron_visualizer`
executables (mentioned below) are not available when using local clone.
Instead users should use the python scripts `experiment.py` and `visualize_reconstruction.py` (see the [Running](Running) section below).


# Running

This section assumes that you use the executable provided by the installed package
(Option 1 / Option 2 in [#Installation](Installation) above),
i.e. `pytorch3d_implicitron_runner` and `pytorch3d_implicitron_visualizer` are available.

> **_NOTE:_**  If the executables are not available (e.g. when using a local clone - Option 3 in [#Installation](Installation)),
users should directly use the `experiment.py` and `visualize_reconstruction.py` python scripts
which correspond to the executables as follows:
- `pytorch3d_implicitron_runner` corresponds to `<pytorch3d_root>/projects/implicitron_trainer/experiment.py`
- `pytorch3d_implicitron_visualizer` corresponds to `<pytorch3d_root>/projects/implicitron_trainer/visualize_reconstruction.py`

For instance, in order to directly execute training with the python script, users can call:
```shell
cd <pytorch3d_root>/projects/
python -m implicitron_trainer.experiment <args>`
```

If you have a custom `experiment.py` or `visualize_reconstruction.py` script
(as in the Option 2 [above](#Installation)), replace the executable with the path to your script.

## Training

To run training, pass a yaml config file, followed by a list of overridden arguments.
For example, to train NeRF on the first skateboard sequence from CO3D dataset, you can run:
```shell
dataset_args=data_source_ImplicitronDataSource_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
pytorch3d_implicitron_runner --config-path ./configs/ --config-name repro_singleseq_nerf \
    $dataset_args.dataset_root=<DATASET_ROOT> $dataset_args.category='skateboard' \
    $dataset_args.test_restrict_sequence_id=0 test_when_finished=True exp_dir=<CHECKPOINT_DIR>
```

Here, `--config-path` points to the config path relative to `pytorch3d_implicitron_runner` location;
`--config-name` picks the config (in this case, `repro_singleseq_nerf.yaml`);
`test_when_finished` will launch evaluation script once training is finished.
Replace `<DATASET_ROOT>` with the location where the dataset in Implicitron format is stored
and `<CHECKPOINT_DIR>` with a directory where checkpoints will be dumped during training.
Other configuration parameters can be overridden in the same way.
See [Configuration system](#configuration-system) section for more information on this.

### Visdom logging

Note that the training script logs its progress to Visdom. Make sure to start a visdom server before the training commences:
```
python -m visdom.server
```
> In case a Visdom server is not started, the console will get flooded with `requests.exceptions.ConnectionError` errors signalling that a Visdom server is not available. Note that these errors <b>will NOT interrupt</b> the program and the training will still continue without issues.

## Evaluation

To run evaluation on the latest checkpoint after (or during) training, simply add `eval_only=True` to your training command.

E.g. for executing the evaluation on the NeRF skateboard sequence, you can run:
```shell
dataset_args=data_source_ImplicitronDataSource_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
pytorch3d_implicitron_runner --config-path ./configs/ --config-name repro_singleseq_nerf \
    $dataset_args.dataset_root=<CO3D_DATASET_ROOT> $dataset_args.category='skateboard' \
    $dataset_args.test_restrict_sequence_id=0 exp_dir=<CHECKPOINT_DIR> eval_only=True
```
Evaluation prints the metrics to `stdout` and dumps them to a json file in `exp_dir`.

## Visualisation

The script produces a video of renders by a trained model assuming a pre-defined camera trajectory.
In order for it to work, `ffmpeg` needs to be installed:

```shell
conda install ffmpeg
```

Here is an example of calling the script:
```shell
pytorch3d_implicitron_visualizer exp_dir=<CHECKPOINT_DIR> \
    visdom_show_preds=True n_eval_cameras=40 render_size="[64,64]" video_size="[256,256]"
```

The argument `n_eval_cameras` sets the number of renderring viewpoints sampled on a trajectory, which defaults to a circular fly-around;
`render_size` sets the size of a render passed to the model, which can be resized to `video_size` before writing.

Rendered videos of images, masks, and depth maps will be saved to `<CHECKPOINT_DIR>/video`.


# Configuration system

We use hydra and OmegaConf to parse the configs.
The config schema and default values are defined by the dataclasses implementing the modules.
More specifically, if a class derives from `Configurable`, its fields can be set in config yaml files or overridden in CLI.
For example, `GenericModel` has a field `render_image_width` with the default value 400.
If it is specified in the yaml config file or in CLI command, the new value will be used.

Configurables can form hierarchies.
For example, `GenericModel` has a field `raysampler: RaySampler`, which is also Configurable.
In the config, inner parameters can be propagated using `_args` postfix, e.g. to change `raysampler.n_pts_per_ray_training` (the number of sampled points per ray), the node `raysampler_args.n_pts_per_ray_training` should be specified.

### Top-level configuration class: `Experiment`

<b>The root of the hierarchy is defined by `Experiment` Configurable in `<pytorch3d_root>/projects/implicitron_trainer/experiment.py`.</b>

It has top-level fields like `seed`, which seeds the random number generator.
Additionally, it has non-leaf nodes like `model_factory_ImplicitronModelFactory_args.model_GenericModel_args`, which dispatches the config parameters to `GenericModel`.
Thus, changing the model parameters may be achieved in two ways: either by editing the config file, e.g.
```yaml
model_factory_ImplicitronModelFactory_args:
    model_GenericModel_args:
        render_image_width: 800
        raysampler_args:
            n_pts_per_ray_training: 128
```

or, equivalently, by adding the following to `pytorch3d_implicitron_runner` arguments:

```shell
model_args=model_factory_ImplicitronModelFactory_args.model_GenericModel_args
$model_args.render_image_width=800 $model_args.raysampler_args.n_pts_per_ray_training=128
```

See the documentation in `pytorch3d/implicitron/tools/config.py` for more details.

## Replaceable implementations

Sometimes changing the model parameters does not provide enough flexibility, and you want to provide a new implementation for a building block.
The configuration system also supports it!
Abstract classes like `BaseRenderer` derive from `ReplaceableBase` instead of `Configurable`.
This means that other Configurables can refer to them using the base type, while the specific implementation is chosen in the config using `_class_type`-postfixed node.
In that case, `_args` node name has to include the implementation type.
More specifically, to change renderer settings, the config will look like this:
```yaml
model_factory_ImplicitronModelFactory_args:
    model_GenericModel_args:
        renderer_class_type: LSTMRenderer
        renderer_LSTMRenderer_args:
            num_raymarch_steps: 10
            hidden_size: 16
```

See the documentation in `pytorch3d/implicitron/tools/config.py` for more details on the configuration system.

## Custom plugins

If you have an idea for another implementation of a replaceable component, it can be plugged in without changing the core code.
For that, you need to set up Implicitron through option 2 or 3 above.
Let's say you want to implement a renderer that accumulates opacities similar to an X-ray machine.
First, create a module `x_ray_renderer.py` with a class deriving from `BaseRenderer`:

```python
from pytorch3d.implicitron.tools.config import registry

@registry.register
class XRayRenderer(BaseRenderer, torch.nn.Module):
    n_pts_per_ray: int = 64

    def __post_init__(self):
        # custom initialization

    def forward(
        self,
        ray_bundle,
        implicit_functions=[],
        evaluation_mode: EvaluationMode = EvaluationMode.EVALUATION,
        **kwargs,
    ) -> RendererOutput:
        ...
```

Please note `@registry.register` decorator that registers the plug-in as an implementation of `Renderer`.
IMPORTANT: In order for it to run, the class (or its enclosing module) has to be imported in your launch script.
Additionally, this has to be done before parsing the root configuration class `ExperimentConfig`.
Simply add `import .x_ray_renderer` in the beginning of `experiment.py`.

After that, you should be able to change the config with:
```yaml
model_factory_ImplicitronModelFactory_args:
    model_GenericModel_args:
        renderer_class_type: XRayRenderer
        renderer_XRayRenderer_args:
            n_pts_per_ray: 128
```

to replace the implementation and potentially override the parameters.

# Code and config structure

The main object for this trainer loop is `Experiment`. It has four top-level replaceable components.

* `data_source`: This is a `DataSourceBase` which defaults to `ImplicitronDataSource`.
It constructs the data sets and dataloaders.
* `model_factory`: This is a `ModelFactoryBase` which defaults to `ImplicitronModelFactory`.
It constructs the model, which is usually an instance of `OverfitModel` (for NeRF-style training with overfitting to one scene) or `GenericModel` (that is able to generalize to multiple scenes by NeRFormer-style conditioning on other scene views), and can load its weights from a checkpoint.
* `optimizer_factory`: This is an `OptimizerFactoryBase` which defaults to `ImplicitronOptimizerFactory`.
It constructs the optimizer and can load its weights from a checkpoint.
* `training_loop`: This is a `TrainingLoopBase` which defaults to `ImplicitronTrainingLoop` and defines the main training loop.

As per above, the config structure is parsed automatically from the module hierarchy.
In particular, for ImplicitronModelFactory with generic model, model parameters are contained in the `model_factory_ImplicitronModelFactory_args.model_GenericModel_args` node, and dataset parameters in `data_source_ImplicitronDataSource_args` node.

Here is the class structure of GenericModel (single-line edges show aggregation, while double lines show available implementations):
```
model_GenericModel_args: GenericModel
β””-- global_encoder_*_args: GlobalEncoderBase
    β•˜== SequenceAutodecoder
        β””-- autodecoder_args: Autodecoder
    β•˜== HarmonicTimeEncoder
β””-- raysampler_*_args: RaySampler
    β•˜== AdaptiveRaysampler
    β•˜== NearFarRaysampler
β””-- renderer_*_args: BaseRenderer
    β•˜== MultiPassEmissionAbsorptionRenderer
    β•˜== LSTMRenderer
    β•˜== SignedDistanceFunctionRenderer
        β””-- ray_tracer_args: RayTracing
        β””-- ray_normal_coloring_network_args: RayNormalColoringNetwork
β””-- implicit_function_*_args: ImplicitFunctionBase
    β•˜== NeuralRadianceFieldImplicitFunction
    β•˜== SRNImplicitFunction
        β””-- raymarch_function_args: SRNRaymarchFunction
        β””-- pixel_generator_args: SRNPixelGenerator
    β•˜== SRNHyperNetImplicitFunction
        β””-- hypernet_args: SRNRaymarchHyperNet
        β””-- pixel_generator_args: SRNPixelGenerator
    β•˜== IdrFeatureField
β””-- image_feature_extractor_*_args: FeatureExtractorBase
    β•˜== ResNetFeatureExtractor
β””-- view_pooler_args: ViewPooler
    β””-- view_sampler_args: ViewSampler
    β””-- feature_aggregator_*_args: FeatureAggregatorBase
        β•˜== IdentityFeatureAggregator
        β•˜== AngleWeightedIdentityFeatureAggregator
        β•˜== AngleWeightedReductionFeatureAggregator
        β•˜== ReductionFeatureAggregator
```

Here is the class structure of OverfitModel:

```
model_OverfitModel_args: OverfitModel
β””-- raysampler_*_args: RaySampler
    β•˜== AdaptiveRaysampler
    β•˜== NearFarRaysampler
β””-- renderer_*_args: BaseRenderer
    β•˜== MultiPassEmissionAbsorptionRenderer
    β•˜== LSTMRenderer
    β•˜== SignedDistanceFunctionRenderer
        β””-- ray_tracer_args: RayTracing
        β””-- ray_normal_coloring_network_args: RayNormalColoringNetwork
β””-- implicit_function_*_args: ImplicitFunctionBase
    β•˜== NeuralRadianceFieldImplicitFunction
    β•˜== SRNImplicitFunction
        β””-- raymarch_function_args: SRNRaymarchFunction
        β””-- pixel_generator_args: SRNPixelGenerator
    β•˜== SRNHyperNetImplicitFunction
        β””-- hypernet_args: SRNRaymarchHyperNet
        β””-- pixel_generator_args: SRNPixelGenerator
    β•˜== IdrFeatureField
β””-- coarse_implicit_function_*_args: ImplicitFunctionBase
    β•˜== NeuralRadianceFieldImplicitFunction
    β•˜== SRNImplicitFunction
        β””-- raymarch_function_args: SRNRaymarchFunction
        β””-- pixel_generator_args: SRNPixelGenerator
    β•˜== SRNHyperNetImplicitFunction
        β””-- hypernet_args: SRNRaymarchHyperNet
        β””-- pixel_generator_args: SRNPixelGenerator
    β•˜== IdrFeatureField
```

OverfitModel has been introduced to create a simple class to disantagle Nerfs which the overfit pattern
from the GenericModel.


Please look at the annotations of the respective classes or functions for the lists of hyperparameters.
`tests/experiment.yaml` shows every possible option if you have no user-defined classes.


# Implementations of existing methods

We provide configuration files that implement several existing works.

<b>The configuration files live in `pytorch3d/projects/implicitron_trainer/configs`.</b>


## NeRF

The following config file corresponds to training of a vanilla NeRF on Blender Synthetic dataset
(see https://arxiv.org/abs/2003.08934 for details of the method):

`./configs/repro_singleseq_nerf_blender.yaml`


### Downloading Blender-Synthetic
Training requires the Blender Synthetic dataset.
To download the dataset, visit the [gdrive bucket](https://drive.google.com/file/d/18JxhpWD-4ZmuFKLzKlAw-w5PpzZxXOcG/view?usp=share_link)
and click Download.
Then unpack the downloaded .zip file to a folder which we call `<BLENDER_DATASET_ROOT_FOLDER>`.


### Launching NeRF training
In order to train NeRF on the "drums" scene, execute the following command:
```shell
export BLENDER_DATASET_ROOT="<BLENDER_DATASET_ROOT_FOLDER>" \
export BLENDER_SINGLESEQ_CLASS="drums" \
pytorch3d_implicitron_runner --config-path ./configs/ --config-name repro_singleseq_nerf_blender
```

Note that the training scene is selected by setting the environment variable `BLENDER_SINGLESEQ_CLASS`
appropriately (one of `"chair"`, `"drums"`, `"ficus"`, `"hotdog"`, `"lego"`, `"materials"`, `"mic"`, `"ship"`).

By default, the training outputs will be stored to `"./data/nerf_blender_repro/$BLENDER_SINGLESEQ_CLASS/"`


### Visualizing trained NeRF
```shell
pytorch3d_implicitron_visualizer exp_dir=<CHECKPOINT_DIR> \
    visdom_show_preds=True n_eval_cameras=40 render_size="[64,64]" video_size="[256,256]"
```
where `<CHECKPOINT_DIR>` corresponds to the directory with the training outputs (defaults to `"./data/nerf_blender_repro/$BLENDER_SINGLESEQ_CLASS/"`).

The script will output a rendered video of the learned radiance field to `"./data/nerf_blender_repro/$BLENDER_SINGLESEQ_CLASS/"` (requires `ffmpeg`).

> **_NOTE:_** Recall that, if `pytorch3d_implicitron_runner`/`pytorch3d_implicitron_visualizer` are not available, replace the calls
with `cd <pytorch3d_root>/projects/; python -m implicitron_trainer.[experiment|visualize_reconstruction]`


## CO3D experiments

Common Objects in 3D (CO3D) is a large-scale dataset of videos of rigid objects grouped into 50 common categories.
Implicitron provides implementations and config files to reproduce the results from [the paper](https://arxiv.org/abs/2109.00512).
Please follow [the link](https://github.com/facebookresearch/co3d#automatic-batch-download) for the instructions to download the dataset.
In training and evaluation scripts, use the download location as `<DATASET_ROOT>`.
It is also possible to define environment variable `CO3D_DATASET_ROOT` instead of specifying it.
To reproduce the experiments from the paper, use the following configs.

For single-sequence experiments:

| Method          |   config file                       |
|-----------------|-------------------------------------|
| NeRF            | repro_singleseq_nerf.yaml           |
| NeRF + WCE      | repro_singleseq_nerf_wce.yaml       |
| NerFormer       | repro_singleseq_nerformer.yaml      |
| IDR             | repro_singleseq_idr.yaml            |
| SRN             | repro_singleseq_srn_noharm.yaml     |
| SRN + Ξ³         | repro_singleseq_srn.yaml            |
| SRN + WCE       | repro_singleseq_srn_wce_noharm.yaml |
| SRN + WCE + Ξ³   | repro_singleseq_srn_wce_noharm.yaml |

For multi-sequence autodecoder experiments (without generalization to new sequences):

| Method          |   config file                              |
|-----------------|--------------------------------------------|
| NeRF + AD       | repro_multiseq_nerf_ad.yaml                |
| SRN + AD        | repro_multiseq_srn_ad_hypernet_noharm.yaml |
| SRN + Ξ³ + AD    | repro_multiseq_srn_ad_hypernet.yaml        |

For multi-sequence experiments (with generalization to new sequences):

| Method          |   config file                        |
|-----------------|--------------------------------------|
| NeRF + WCE      | repro_multiseq_nerf_wce.yaml         |
| NerFormer       | repro_multiseq_nerformer.yaml        |
| SRN + WCE       | repro_multiseq_srn_wce_noharm.yaml   |
| SRN + WCE + Ξ³   | repro_multiseq_srn_wce.yaml          |


## CO3Dv2 experiments

The following config files implement training on the second version of CO3D, `CO3Dv2`.

In order to launch trainings, set the `CO3DV2_DATASET_ROOT` environment variable
to the root folder of the dataset (note that the name of the env. variable differs from the CO3Dv1 version).

Single-sequence experiments:

| Method          |   config file                         |
|-----------------|-------------------------------------|
| NeRF            | repro_singleseq_v2_nerf.yaml        |
| NerFormer       | repro_singleseq_v2_nerformer.yaml   |
| IDR             | repro_singleseq_v2_idr.yaml         |
| SRN             | repro_singleseq_v2_srn_noharm.yaml  |

Multi-sequence autodecoder experiments (without generalization to new sequences):

| Method          |   config file                                |
|-----------------|--------------------------------------------|
| NeRF + AD       | repro_multiseq_v2_nerf_ad.yaml             |
| SRN + Ξ³ + AD    | repro_multiseq_v2_srn_ad_hypernet.yaml     |

Multi-sequence experiments (with generalization to new sequences):

| Method          |   config file                            |
|-----------------|----------------------------------------|
| NeRF + WCE      | repro_multiseq_v2_nerf_wce.yaml        |
| NerFormer       | repro_multiseq_v2_nerformer.yaml       |
| SRN + WCE       | repro_multiseq_v2_srn_wce_noharm.yaml  |
| SRN + WCE + Ξ³   | repro_multiseq_v2_srn_wce.yaml         |