File size: 6,158 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# pyre-unsafe

"""
Script to visualize a previously trained model. Example call:

    pytorch3d_implicitron_visualizer \
    exp_dir='./exps/checkpoint_dir' visdom_show_preds=True visdom_port=8097 \
    n_eval_cameras=40 render_size="[64,64]" video_size="[256,256]"
"""

import os
import sys
from typing import Optional, Tuple

import numpy as np
import torch
from omegaconf import DictConfig, OmegaConf
from pytorch3d.implicitron.models.visualization.render_flyaround import render_flyaround
from pytorch3d.implicitron.tools.config import enable_get_default_args, get_default_args

from .experiment import Experiment


def visualize_reconstruction(
    exp_dir: str = "",
    restrict_sequence_name: Optional[str] = None,
    output_directory: Optional[str] = None,
    render_size: Tuple[int, int] = (512, 512),
    video_size: Optional[Tuple[int, int]] = None,
    split: str = "train",
    n_source_views: int = 9,
    n_eval_cameras: int = 40,
    visdom_show_preds: bool = False,
    visdom_server: str = "http://127.0.0.1",
    visdom_port: int = 8097,
    visdom_env: Optional[str] = None,
    **render_flyaround_kwargs,
) -> None:
    """
    Given an `exp_dir` containing a trained Implicitron model, generates videos consisting
    of renderes of sequences from the dataset used to train and evaluate the trained
    Implicitron model.

    Args:
        exp_dir: Implicitron experiment directory.
        restrict_sequence_name: If set, defines the list of sequences to visualize.
        output_directory: If set, defines a custom directory to output visualizations to.
        render_size: The size (HxW) of the generated renders.
        video_size: The size (HxW) of the output video.
        split: The dataset split to use for visualization.
            Can be "train" / "val" / "test".
        n_source_views: The number of source views added to each rendered batch. These
            views are required inputs for models such as NeRFormer / NeRF-WCE.
        n_eval_cameras: The number of cameras each fly-around trajectory.
        visdom_show_preds: If `True`, outputs visualizations to visdom.
        visdom_server: The address of the visdom server.
        visdom_port: The port of the visdom server.
        visdom_env: If set, defines a custom name for the visdom environment.
        render_flyaround_kwargs: Keyword arguments passed to the invoked `render_flyaround`
            function (see `pytorch3d.implicitron.models.visualization.render_flyaround`).
    """

    # In case an output directory is specified use it. If no output_directory
    # is specified create a vis folder inside the experiment directory
    if output_directory is None:
        output_directory = os.path.join(exp_dir, "vis")
    os.makedirs(output_directory, exist_ok=True)

    # Set the random seeds
    torch.manual_seed(0)
    np.random.seed(0)

    # Get the config from the experiment_directory,
    # and overwrite relevant fields
    config = _get_config_from_experiment_directory(exp_dir)
    config.exp_dir = exp_dir
    # important so that the CO3D dataset gets loaded in full
    data_source_args = config.data_source_ImplicitronDataSource_args
    if "dataset_map_provider_JsonIndexDatasetMapProvider_args" in data_source_args:
        dataset_args = (
            data_source_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
        )
        dataset_args.test_on_train = False
        if restrict_sequence_name is not None:
            dataset_args.restrict_sequence_name = restrict_sequence_name

    # Set the rendering image size
    model_factory_args = config.model_factory_ImplicitronModelFactory_args
    model_factory_args.force_resume = True
    model_args = model_factory_args.model_GenericModel_args
    model_args.render_image_width = render_size[0]
    model_args.render_image_height = render_size[1]

    # Load the previously trained model
    experiment = Experiment(**config)
    model = experiment.model_factory(exp_dir=exp_dir)
    device = torch.device("cuda")
    model.to(device)
    model.eval()

    # Setup the dataset
    data_source = experiment.data_source
    dataset_map, _ = data_source.get_datasets_and_dataloaders()
    dataset = dataset_map[split]
    if dataset is None:
        raise ValueError(f"{split} dataset not provided")

    if visdom_env is None:
        visdom_env = (
            "visualizer_" + config.training_loop_ImplicitronTrainingLoop_args.visdom_env
        )

    # iterate over the sequences in the dataset
    for sequence_name in dataset.sequence_names():
        with torch.no_grad():
            render_kwargs = {
                "dataset": dataset,
                "sequence_name": sequence_name,
                "model": model,
                "output_video_path": os.path.join(output_directory, "video"),
                "n_source_views": n_source_views,
                "visdom_show_preds": visdom_show_preds,
                "n_flyaround_poses": n_eval_cameras,
                "visdom_server": visdom_server,
                "visdom_port": visdom_port,
                "visdom_environment": visdom_env,
                "video_resize": video_size,
                "device": device,
                **render_flyaround_kwargs,
            }
            render_flyaround(**render_kwargs)


enable_get_default_args(visualize_reconstruction)


def _get_config_from_experiment_directory(experiment_directory) -> DictConfig:
    cfg_file = os.path.join(experiment_directory, "expconfig.yaml")
    config = OmegaConf.load(cfg_file)
    # pyre-ignore[7]
    return OmegaConf.merge(get_default_args(Experiment), config)


def main(argv=sys.argv) -> None:
    # automatically parses arguments of visualize_reconstruction
    cfg = OmegaConf.create(get_default_args(visualize_reconstruction))
    cfg.update(OmegaConf.from_cli(argv))
    with torch.no_grad():
        visualize_reconstruction(**cfg)


if __name__ == "__main__":
    main()