File size: 4,952 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import unittest

import numpy as np

import torch

from pytorch3d.implicitron.dataset.utils import (
    bbox_xywh_to_xyxy,
    bbox_xyxy_to_xywh,
    clamp_box_to_image_bounds_and_round,
    crop_around_box,
    get_1d_bounds,
    get_bbox_from_mask,
    get_clamp_bbox,
    rescale_bbox,
    resize_image,
)

from tests.common_testing import TestCaseMixin


class TestBBox(TestCaseMixin, unittest.TestCase):
    def setUp(self):
        torch.manual_seed(42)

    def test_bbox_conversion(self):
        bbox_xywh_list = torch.LongTensor(
            [
                [0, 0, 10, 20],
                [10, 20, 5, 1],
                [10, 20, 1, 1],
                [5, 4, 0, 1],
            ]
        )
        for bbox_xywh in bbox_xywh_list:
            bbox_xyxy = bbox_xywh_to_xyxy(bbox_xywh)
            bbox_xywh_ = bbox_xyxy_to_xywh(bbox_xyxy)
            bbox_xyxy_ = bbox_xywh_to_xyxy(bbox_xywh_)
            self.assertClose(bbox_xywh_, bbox_xywh)
            self.assertClose(bbox_xyxy, bbox_xyxy_)

    def test_compare_to_expected(self):
        bbox_xywh_to_xyxy_expected = torch.LongTensor(
            [
                [[0, 0, 10, 20], [0, 0, 10, 20]],
                [[10, 20, 5, 1], [10, 20, 15, 21]],
                [[10, 20, 1, 1], [10, 20, 11, 21]],
                [[5, 4, 0, 1], [5, 4, 5, 5]],
            ]
        )
        for bbox_xywh, bbox_xyxy_expected in bbox_xywh_to_xyxy_expected:
            self.assertClose(bbox_xywh_to_xyxy(bbox_xywh), bbox_xyxy_expected)
            self.assertClose(bbox_xyxy_to_xywh(bbox_xyxy_expected), bbox_xywh)

        clamp_amnt = 3
        bbox_xywh_to_xyxy_clamped_expected = torch.LongTensor(
            [
                [[0, 0, 10, 20], [0, 0, 10, 20]],
                [[10, 20, 5, 1], [10, 20, 15, 20 + clamp_amnt]],
                [[10, 20, 1, 1], [10, 20, 10 + clamp_amnt, 20 + clamp_amnt]],
                [[5, 4, 0, 1], [5, 4, 5 + clamp_amnt, 4 + clamp_amnt]],
            ]
        )
        for bbox_xywh, bbox_xyxy_expected in bbox_xywh_to_xyxy_clamped_expected:
            self.assertClose(
                bbox_xywh_to_xyxy(bbox_xywh, clamp_size=clamp_amnt),
                bbox_xyxy_expected,
            )

    def test_mask_to_bbox(self):
        mask = np.array(
            [
                [0, 0, 0, 0, 0, 0],
                [0, 0, 1, 1, 0, 0],
                [0, 0, 0, 0, 0, 0],
            ]
        ).astype(np.float32)
        expected_bbox_xywh = [2, 1, 2, 1]
        bbox_xywh = get_bbox_from_mask(mask, 0.5)
        self.assertClose(bbox_xywh, expected_bbox_xywh)

    def test_crop_around_box(self):
        bbox = torch.LongTensor([0, 1, 2, 3])  # (x_min, y_min, x_max, y_max)
        image = torch.LongTensor(
            [
                [0, 0, 10, 20],
                [10, 20, 5, 1],
                [10, 20, 1, 1],
                [5, 4, 0, 1],
            ]
        )
        cropped = crop_around_box(image, bbox)
        self.assertClose(cropped, image[1:3, 0:2])

    def test_clamp_box_to_image_bounds_and_round(self):
        bbox = torch.LongTensor([0, 1, 10, 12])
        image_size = (5, 6)
        expected_clamped_bbox = torch.LongTensor([0, 1, image_size[1], image_size[0]])
        clamped_bbox = clamp_box_to_image_bounds_and_round(bbox, image_size)
        self.assertClose(clamped_bbox, expected_clamped_bbox)

    def test_get_clamp_bbox(self):
        bbox_xywh = torch.LongTensor([1, 1, 4, 5])
        clamped_bbox_xyxy = get_clamp_bbox(bbox_xywh, box_crop_context=2)
        # size multiplied by 2 and added coordinates
        self.assertClose(clamped_bbox_xyxy, torch.Tensor([-3, -4, 9, 11]))

    def test_rescale_bbox(self):
        bbox = torch.Tensor([0.0, 1.0, 3.0, 4.0])
        original_resolution = (4, 4)
        new_resolution = (8, 8)  # twice bigger
        rescaled_bbox = rescale_bbox(bbox, original_resolution, new_resolution)
        self.assertClose(bbox * 2, rescaled_bbox)

    def test_get_1d_bounds(self):
        array = [0, 1, 2]
        bounds = get_1d_bounds(array)
        # make nonzero 1d bounds of image
        self.assertClose(bounds, [1, 3])

    def test_resize_image(self):
        image = np.random.rand(3, 300, 500)  # rgb image 300x500
        expected_shape = (150, 250)

        resized_image, scale, mask_crop = resize_image(
            image, image_height=expected_shape[0], image_width=expected_shape[1]
        )

        original_shape = image.shape[-2:]
        expected_scale = min(
            expected_shape[0] / original_shape[0], expected_shape[1] / original_shape[1]
        )

        self.assertEqual(scale, expected_scale)
        self.assertEqual(resized_image.shape[-2:], expected_shape)
        self.assertEqual(mask_crop.shape[-2:], expected_shape)