File size: 8,282 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import unittest
from math import pi

import torch
from pytorch3d.implicitron.tools.circle_fitting import (
    _signed_area,
    fit_circle_in_2d,
    fit_circle_in_3d,
    get_rotation_to_best_fit_xy,
)
from pytorch3d.transforms import random_rotation, random_rotations
from tests.common_testing import TestCaseMixin


class TestCircleFitting(TestCaseMixin, unittest.TestCase):
    def setUp(self):
        torch.manual_seed(42)

    def _assertParallel(self, a, b, **kwargs):
        """
        Given a and b of shape (..., 3) each containing 3D vectors,
        assert that correspnding vectors are parallel. Changed sign is ok.
        """
        self.assertClose(torch.cross(a, b, dim=-1), torch.zeros_like(a), **kwargs)

    def test_plane_levelling(self):
        device = torch.device("cuda:0")
        B = 16
        N = 1024
        random = torch.randn((B, N, 3), device=device)

        # first, check that we always return a vaild rotation
        rot = get_rotation_to_best_fit_xy(random)
        self.assertClose(rot.det(), torch.ones_like(rot[:, 0, 0]))
        self.assertClose(rot.norm(dim=-1), torch.ones_like(rot[:, 0]))

        # then, check the result is what we expect
        z_squeeze = 0.1
        random[..., -1] *= z_squeeze
        rot_gt = random_rotations(B, device=device)
        rotated = random @ rot_gt.transpose(-1, -2)
        rot_hat = get_rotation_to_best_fit_xy(rotated)
        self.assertClose(rot.det(), torch.ones_like(rot[:, 0, 0]))
        self.assertClose(rot.norm(dim=-1), torch.ones_like(rot[:, 0]))
        # covariance matrix of the levelled points is by design diag(1, 1, z_squeeze²)
        self.assertClose(
            (rotated @ rot_hat)[..., -1].std(dim=-1),
            torch.ones_like(rot_hat[:, 0, 0]) * z_squeeze,
            rtol=0.1,
        )

    def test_simple_3d(self):
        device = torch.device("cuda:0")
        for _ in range(7):
            radius = 10 * torch.rand(1, device=device)[0]
            center = 10 * torch.rand(3, device=device)
            rot = random_rotation(device=device)
            offset = torch.rand(3, device=device)
            up = torch.rand(3, device=device)
            self._simple_3d_test(radius, center, rot, offset, up)

    def _simple_3d_test(self, radius, center, rot, offset, up):
        # angles are increasing so the points move in a well defined direction.
        angles = torch.cumsum(torch.rand(17, device=rot.device), dim=0)
        many = torch.stack(
            [torch.cos(angles), torch.sin(angles), torch.zeros_like(angles)], dim=1
        )
        source_points = (many * radius) @ rot + center[None]

        # case with no generation
        result = fit_circle_in_3d(source_points)
        self.assertClose(result.radius, radius)
        self.assertClose(result.center, center)
        self._assertParallel(result.normal, rot[2], atol=1e-5)
        self.assertEqual(result.generated_points.shape, (0, 3))

        # Generate 5 points around the circle
        n_new_points = 5
        result2 = fit_circle_in_3d(source_points, n_points=n_new_points)
        self.assertClose(result2.radius, radius)
        self.assertClose(result2.center, center)
        self.assertClose(result2.normal, result.normal)
        self.assertEqual(result2.generated_points.shape, (5, 3))

        observed_points = result2.generated_points
        self.assertClose(observed_points[0], observed_points[4], atol=1e-4)
        self.assertClose(observed_points[0], source_points[0], atol=1e-5)
        observed_normal = torch.cross(
            observed_points[0] - observed_points[2],
            observed_points[1] - observed_points[3],
            dim=-1,
        )
        self._assertParallel(observed_normal, result.normal, atol=1e-4)
        diameters = observed_points[:2] - observed_points[2:4]
        self.assertClose(
            torch.norm(diameters, dim=1), diameters.new_full((2,), 2 * radius)
        )

        # Regenerate the input points
        result3 = fit_circle_in_3d(source_points, angles=angles - angles[0])
        self.assertClose(result3.radius, radius)
        self.assertClose(result3.center, center)
        self.assertClose(result3.normal, result.normal)
        self.assertClose(result3.generated_points, source_points, atol=1e-5)

        # Test with offset
        result4 = fit_circle_in_3d(
            source_points, angles=angles - angles[0], offset=offset, up=up
        )
        self.assertClose(result4.radius, radius)
        self.assertClose(result4.center, center)
        self.assertClose(result4.normal, result.normal)
        observed_offsets = result4.generated_points - source_points

        # observed_offset is constant
        self.assertClose(
            observed_offsets.min(0).values, observed_offsets.max(0).values, atol=1e-5
        )
        # observed_offset has the right length
        self.assertClose(observed_offsets[0].norm(), offset.norm())

        self.assertClose(result.normal.norm(), torch.ones(()))
        # component of observed_offset along normal
        component = torch.dot(observed_offsets[0], result.normal)
        self.assertClose(component.abs(), offset[2].abs(), atol=1e-5)
        agree_normal = torch.dot(result.normal, up) > 0
        agree_signs = component * offset[2] > 0
        self.assertEqual(agree_normal, agree_signs)

    def test_simple_2d(self):
        radius = 7.0
        center = torch.tensor([9, 2.5])
        angles = torch.cumsum(torch.rand(17), dim=0)
        many = torch.stack([torch.cos(angles), torch.sin(angles)], dim=1)
        source_points = (many * radius) + center[None]

        result = fit_circle_in_2d(source_points)
        self.assertClose(result.radius, torch.tensor(radius))
        self.assertClose(result.center, center)
        self.assertEqual(result.generated_points.shape, (0, 2))

        # Generate 5 points around the circle
        n_new_points = 5
        result2 = fit_circle_in_2d(source_points, n_points=n_new_points)
        self.assertClose(result2.radius, torch.tensor(radius))
        self.assertClose(result2.center, center)
        self.assertEqual(result2.generated_points.shape, (5, 2))

        observed_points = result2.generated_points
        self.assertClose(observed_points[0], observed_points[4])
        self.assertClose(observed_points[0], source_points[0], atol=1e-5)
        diameters = observed_points[:2] - observed_points[2:4]
        self.assertClose(torch.norm(diameters, dim=1), torch.full((2,), 2 * radius))

        # Regenerate the input points
        result3 = fit_circle_in_2d(source_points, angles=angles - angles[0])
        self.assertClose(result3.radius, torch.tensor(radius))
        self.assertClose(result3.center, center)
        self.assertClose(result3.generated_points, source_points, atol=1e-5)

    def test_minimum_inputs(self):
        fit_circle_in_3d(torch.rand(3, 3), n_points=10)

        with self.assertRaisesRegex(
            ValueError, "2 points are not enough to determine a circle"
        ):
            fit_circle_in_3d(torch.rand(2, 3))

    def test_signed_area(self):
        n_points = 1001
        angles = torch.linspace(0, 2 * pi, n_points)
        radius = 0.85
        center = torch.rand(2)
        circle = center + radius * torch.stack(
            [torch.cos(angles), torch.sin(angles)], dim=1
        )
        circle_area = torch.tensor(pi * radius * radius)
        self.assertClose(_signed_area(circle), circle_area)
        # clockwise is negative
        self.assertClose(_signed_area(circle.flip(0)), -circle_area)

        # Semicircles
        self.assertClose(_signed_area(circle[: (n_points + 1) // 2]), circle_area / 2)
        self.assertClose(_signed_area(circle[n_points // 2 :]), circle_area / 2)

        # A straight line bounds no area
        self.assertClose(_signed_area(torch.rand(2, 2)), torch.tensor(0.0))

        # Letter 'L' written anticlockwise.
        L_shape = [[0, 1], [0, 0], [1, 0]]
        # Triangle area is 0.5 * b * h.
        self.assertClose(_signed_area(torch.tensor(L_shape)), torch.tensor(0.5))