File size: 6,501 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import os
import unittest

import torch
from pytorch3d.implicitron.dataset.blender_dataset_map_provider import (
    BlenderDatasetMapProvider,
)
from pytorch3d.implicitron.dataset.data_source import ImplicitronDataSource
from pytorch3d.implicitron.dataset.dataset_base import FrameData
from pytorch3d.implicitron.dataset.llff_dataset_map_provider import (
    LlffDatasetMapProvider,
)
from pytorch3d.implicitron.tools.config import expand_args_fields, get_default_args
from pytorch3d.renderer import PerspectiveCameras
from tests.common_testing import TestCaseMixin


# These tests are only run internally, where the data is available.
internal = os.environ.get("FB_TEST", False)
inside_re_worker = os.environ.get("INSIDE_RE_WORKER", False)


@unittest.skipUnless(internal, "no data")
class TestDataLlff(TestCaseMixin, unittest.TestCase):
    def test_synthetic(self):
        if inside_re_worker:
            return
        expand_args_fields(BlenderDatasetMapProvider)

        provider = BlenderDatasetMapProvider(
            base_dir="manifold://co3d/tree/nerf_data/nerf_synthetic/lego",
            object_name="lego",
        )
        dataset_map = provider.get_dataset_map()
        known_matrix = torch.zeros(1, 4, 4)
        known_matrix[0, 0, 0] = 2.7778
        known_matrix[0, 1, 1] = 2.7778
        known_matrix[0, 2, 3] = 1
        known_matrix[0, 3, 2] = 1

        for name, length in [("train", 100), ("val", 100), ("test", 200)]:
            dataset = getattr(dataset_map, name)
            self.assertEqual(len(dataset), length)
            # try getting a value
            value = dataset[0]
            self.assertEqual(value.image_rgb.shape, (3, 800, 800))
            self.assertEqual(value.fg_probability.shape, (1, 800, 800))
            # corner of image is background
            self.assertEqual(value.fg_probability[0, 0, 0], 0)
            self.assertEqual(value.fg_probability.max(), 1.0)
            self.assertIsInstance(value.camera, PerspectiveCameras)
            self.assertEqual(len(value.camera), 1)
            self.assertIsNone(value.camera.K)
            matrix = value.camera.get_projection_transform().get_matrix()
            self.assertClose(matrix, known_matrix, atol=1e-4)
            self.assertIsInstance(value, FrameData)

    def test_llff(self):
        if inside_re_worker:
            return
        expand_args_fields(LlffDatasetMapProvider)

        provider = LlffDatasetMapProvider(
            base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern",
            object_name="fern",
            downscale_factor=8,
        )
        dataset_map = provider.get_dataset_map()
        known_matrix = torch.zeros(1, 4, 4)
        known_matrix[0, 0, 0] = 2.1564
        known_matrix[0, 1, 1] = 2.1564
        known_matrix[0, 2, 3] = 1
        known_matrix[0, 3, 2] = 1

        for name, length, frame_type in [
            ("train", 17, "known"),
            ("test", 3, "unseen"),
            ("val", 3, "unseen"),
        ]:
            dataset = getattr(dataset_map, name)
            self.assertEqual(len(dataset), length)
            # try getting a value
            value = dataset[0]
            self.assertIsInstance(value, FrameData)
            self.assertEqual(value.frame_type, frame_type)
            self.assertEqual(value.image_rgb.shape, (3, 378, 504))
            self.assertIsInstance(value.camera, PerspectiveCameras)
            self.assertEqual(len(value.camera), 1)
            self.assertIsNone(value.camera.K)
            matrix = value.camera.get_projection_transform().get_matrix()
            self.assertClose(matrix, known_matrix, atol=1e-4)

        self.assertEqual(len(dataset_map.test.get_eval_batches()), 3)
        for batch in dataset_map.test.get_eval_batches():
            self.assertEqual(len(batch), 1)
            self.assertEqual(dataset_map.test[batch[0]].frame_type, "unseen")

    def test_include_known_frames(self):
        if inside_re_worker:
            return
        expand_args_fields(LlffDatasetMapProvider)

        provider = LlffDatasetMapProvider(
            base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern",
            object_name="fern",
            n_known_frames_for_test=2,
        )
        dataset_map = provider.get_dataset_map()

        for name, types in [
            ("train", ["known"] * 17),
            ("val", ["unseen"] * 3 + ["known"] * 17),
            ("test", ["unseen"] * 3 + ["known"] * 17),
        ]:
            dataset = getattr(dataset_map, name)
            self.assertEqual(len(dataset), len(types))
            for i, frame_type in enumerate(types):
                value = dataset[i]
                self.assertEqual(value.frame_type, frame_type)
                self.assertIsNone(value.fg_probability)

        self.assertEqual(len(dataset_map.test.get_eval_batches()), 3)
        for batch in dataset_map.test.get_eval_batches():
            self.assertEqual(len(batch), 3)
            self.assertEqual(dataset_map.test[batch[0]].frame_type, "unseen")
            for i in batch[1:]:
                self.assertEqual(dataset_map.test[i].frame_type, "known")

    def test_loaders(self):
        if inside_re_worker:
            return
        args = get_default_args(ImplicitronDataSource)
        args.dataset_map_provider_class_type = "BlenderDatasetMapProvider"
        dataset_args = args.dataset_map_provider_BlenderDatasetMapProvider_args
        dataset_args.object_name = "lego"
        dataset_args.base_dir = "manifold://co3d/tree/nerf_data/nerf_synthetic/lego"

        data_source = ImplicitronDataSource(**args)
        _, data_loaders = data_source.get_datasets_and_dataloaders()
        for i in data_loaders.train:
            self.assertEqual(i.frame_type, ["known"])
            self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800))
        for i in data_loaders.val:
            self.assertEqual(i.frame_type, ["unseen"])
            self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800))
        for i in data_loaders.test:
            self.assertEqual(i.frame_type, ["unseen"])
            self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800))

        cameras = data_source.all_train_cameras
        self.assertIsInstance(cameras, PerspectiveCameras)
        self.assertEqual(len(cameras), 100)