Spaces:
Running
Running
File size: 4,597 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import os
import unittest
import unittest.mock
import torch
from omegaconf import OmegaConf
from pytorch3d.implicitron.dataset.data_loader_map_provider import (
SequenceDataLoaderMapProvider,
SimpleDataLoaderMapProvider,
)
from pytorch3d.implicitron.dataset.data_source import ImplicitronDataSource
from pytorch3d.implicitron.dataset.json_index_dataset import JsonIndexDataset
from pytorch3d.implicitron.tools.config import get_default_args
from tests.common_testing import get_tests_dir
from tests.implicitron.common_resources import get_skateboard_data
DATA_DIR = get_tests_dir() / "implicitron/data"
DEBUG: bool = False
class TestDataSource(unittest.TestCase):
def setUp(self):
self.maxDiff = None
torch.manual_seed(42)
stack = contextlib.ExitStack()
self.dataset_root, self.path_manager = stack.enter_context(
get_skateboard_data()
)
self.addCleanup(stack.close)
def _test_omegaconf_generic_failure(self):
# OmegaConf possible bug - this is why we need _GenericWorkaround
from dataclasses import dataclass
import torch
@dataclass
class D(torch.utils.data.Dataset[int]):
a: int = 3
OmegaConf.structured(D)
def _test_omegaconf_ListList(self):
# Demo that OmegaConf doesn't support nested lists
from dataclasses import dataclass
from typing import Sequence
@dataclass
class A:
a: Sequence[Sequence[int]] = ((32,),)
OmegaConf.structured(A)
def test_JsonIndexDataset_args(self):
# test that JsonIndexDataset works with get_default_args
get_default_args(JsonIndexDataset)
def test_one(self):
cfg = get_default_args(ImplicitronDataSource)
# making the test invariant to env variables
cfg.dataset_map_provider_JsonIndexDatasetMapProvider_args.dataset_root = ""
cfg.dataset_map_provider_JsonIndexDatasetMapProviderV2_args.dataset_root = ""
# making the test invariant to the presence of SQL dataset
if "dataset_map_provider_SqlIndexDatasetMapProvider_args" in cfg:
del cfg.dataset_map_provider_SqlIndexDatasetMapProvider_args
yaml = OmegaConf.to_yaml(cfg, sort_keys=False)
if DEBUG:
(DATA_DIR / "data_source.yaml").write_text(yaml)
self.assertEqual(yaml, (DATA_DIR / "data_source.yaml").read_text())
def test_default(self):
if os.environ.get("INSIDE_RE_WORKER") is not None:
return
args = get_default_args(ImplicitronDataSource)
args.dataset_map_provider_class_type = "JsonIndexDatasetMapProvider"
dataset_args = args.dataset_map_provider_JsonIndexDatasetMapProvider_args
dataset_args.category = "skateboard"
dataset_args.test_restrict_sequence_id = 0
dataset_args.n_frames_per_sequence = -1
dataset_args.dataset_root = self.dataset_root
data_source = ImplicitronDataSource(**args)
self.assertIsInstance(
data_source.data_loader_map_provider, SequenceDataLoaderMapProvider
)
_, data_loaders = data_source.get_datasets_and_dataloaders()
self.assertEqual(len(data_loaders.train), 81)
for i in data_loaders.train:
self.assertEqual(i.frame_type, ["test_known"])
break
def test_simple(self):
if os.environ.get("INSIDE_RE_WORKER") is not None:
return
args = get_default_args(ImplicitronDataSource)
args.dataset_map_provider_class_type = "JsonIndexDatasetMapProvider"
args.data_loader_map_provider_class_type = "SimpleDataLoaderMapProvider"
dataset_args = args.dataset_map_provider_JsonIndexDatasetMapProvider_args
dataset_args.category = "skateboard"
dataset_args.test_restrict_sequence_id = 0
dataset_args.n_frames_per_sequence = -1
dataset_args.dataset_root = self.dataset_root
data_source = ImplicitronDataSource(**args)
self.assertIsInstance(
data_source.data_loader_map_provider, SimpleDataLoaderMapProvider
)
_, data_loaders = data_source.get_datasets_and_dataloaders()
self.assertEqual(len(data_loaders.train), 81)
for i in data_loaders.train:
self.assertEqual(i.frame_type, ["test_known"])
break
|