File size: 5,397 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import contextlib
import math
import os
import unittest
from typing import Tuple

import torch
from pytorch3d.implicitron.dataset.json_index_dataset import JsonIndexDataset
from pytorch3d.implicitron.dataset.visualize import get_implicitron_sequence_pointcloud

from pytorch3d.implicitron.models.visualization.render_flyaround import render_flyaround
from pytorch3d.implicitron.tools.config import expand_args_fields
from pytorch3d.implicitron.tools.point_cloud_utils import render_point_cloud_pytorch3d
from pytorch3d.renderer.cameras import CamerasBase
from tests.common_testing import interactive_testing_requested
from visdom import Visdom

from .common_resources import get_skateboard_data


class TestModelVisualize(unittest.TestCase):
    def test_flyaround_one_sequence(
        self,
        image_size: int = 256,
    ):
        if not interactive_testing_requested():
            return
        category = "skateboard"
        stack = contextlib.ExitStack()
        dataset_root, path_manager = stack.enter_context(get_skateboard_data())
        self.addCleanup(stack.close)
        frame_file = os.path.join(dataset_root, category, "frame_annotations.jgz")
        sequence_file = os.path.join(dataset_root, category, "sequence_annotations.jgz")
        subset_lists_file = os.path.join(dataset_root, category, "set_lists.json")
        expand_args_fields(JsonIndexDataset)
        train_dataset = JsonIndexDataset(
            frame_annotations_file=frame_file,
            sequence_annotations_file=sequence_file,
            subset_lists_file=subset_lists_file,
            dataset_root=dataset_root,
            image_height=image_size,
            image_width=image_size,
            box_crop=True,
            load_point_clouds=True,
            path_manager=path_manager,
            subsets=[
                "train_known",
            ],
        )

        # select few sequences to visualize
        sequence_names = list(train_dataset.seq_annots.keys())

        # select the first sequence name
        show_sequence_name = sequence_names[0]

        output_dir = os.path.split(os.path.abspath(__file__))[0]

        visdom_show_preds = Visdom().check_connection()

        for load_dataset_pointcloud in [True, False]:

            model = _PointcloudRenderingModel(
                train_dataset,
                show_sequence_name,
                device="cuda:0",
                load_dataset_pointcloud=load_dataset_pointcloud,
            )

            video_path = os.path.join(
                output_dir,
                f"load_pcl_{load_dataset_pointcloud}",
            )

            os.makedirs(output_dir, exist_ok=True)

            for output_video_frames_dir in [None, video_path]:
                render_flyaround(
                    train_dataset,
                    show_sequence_name,
                    model,
                    video_path,
                    n_flyaround_poses=10,
                    fps=5,
                    max_angle=2 * math.pi,
                    trajectory_type="circular_lsq_fit",
                    trajectory_scale=1.1,
                    scene_center=(0.0, 0.0, 0.0),
                    up=(0.0, 1.0, 0.0),
                    traj_offset=1.0,
                    n_source_views=1,
                    visdom_show_preds=visdom_show_preds,
                    visdom_environment="test_model_visalize",
                    visdom_server="http://127.0.0.1",
                    visdom_port=8097,
                    num_workers=10,
                    seed=None,
                    video_resize=None,
                    visualize_preds_keys=[
                        "images_render",
                        "depths_render",
                        "masks_render",
                        "_all_source_images",
                    ],
                    output_video_frames_dir=output_video_frames_dir,
                )


class _PointcloudRenderingModel(torch.nn.Module):
    def __init__(
        self,
        train_dataset: JsonIndexDataset,
        sequence_name: str,
        render_size: Tuple[int, int] = (400, 400),
        device=None,
        load_dataset_pointcloud: bool = False,
        max_frames: int = 30,
        num_workers: int = 10,
    ):
        super().__init__()
        self._render_size = render_size
        point_cloud, _ = get_implicitron_sequence_pointcloud(
            train_dataset,
            sequence_name=sequence_name,
            mask_points=True,
            max_frames=max_frames,
            num_workers=num_workers,
            load_dataset_point_cloud=load_dataset_pointcloud,
        )
        self._point_cloud = point_cloud.to(device)

    def forward(
        self,
        camera: CamerasBase,
        **kwargs,
    ):
        image_render, mask_render, depth_render = render_point_cloud_pytorch3d(
            camera[0],
            self._point_cloud,
            render_size=self._render_size,
            point_radius=1e-2,
            topk=10,
            bg_color=0.0,
        )
        return {
            "images_render": image_render.clamp(0.0, 1.0),
            "masks_render": mask_render,
            "depths_render": depth_render,
        }