File size: 9,882 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.


import unittest

import numpy as np

import torch

from pytorch3d.implicitron.models.renderer.base import (
    approximate_conical_frustum_as_gaussians,
    compute_3d_diagonal_covariance_gaussian,
    conical_frustum_to_gaussian,
    ImplicitronRayBundle,
)
from pytorch3d.implicitron.models.renderer.ray_sampler import AbstractMaskRaySampler

from tests.common_testing import TestCaseMixin


class TestRendererBase(TestCaseMixin, unittest.TestCase):
    def test_implicitron_from_bins(self) -> None:
        bins = torch.randn(2, 3, 4, 5)
        ray_bundle = ImplicitronRayBundle(
            origins=None,
            directions=None,
            lengths=None,
            xys=None,
            bins=bins,
        )
        self.assertClose(ray_bundle.lengths, 0.5 * (bins[..., 1:] + bins[..., :-1]))
        self.assertClose(ray_bundle.bins, bins)

    def test_implicitron_raise_value_error_bins_is_set_and_try_to_set_lengths(
        self,
    ) -> None:
        ray_bundle = ImplicitronRayBundle(
            origins=torch.rand(2, 3, 4, 3),
            directions=torch.rand(2, 3, 4, 3),
            lengths=None,
            xys=torch.rand(2, 3, 4, 2),
            bins=torch.rand(2, 3, 4, 14),
        )
        with self.assertRaisesRegex(
            ValueError,
            "If the bins attribute is not None you cannot set the lengths attribute.",
        ):
            ray_bundle.lengths = torch.empty(2)

    def test_implicitron_raise_value_error_if_bins_dim_equal_1(self) -> None:
        with self.assertRaisesRegex(
            ValueError, "The last dim of bins must be at least superior or equal to 2."
        ):
            ImplicitronRayBundle(
                origins=torch.rand(2, 3, 4, 3),
                directions=torch.rand(2, 3, 4, 3),
                lengths=None,
                xys=torch.rand(2, 3, 4, 2),
                bins=torch.rand(2, 3, 4, 1),
            )

    def test_implicitron_raise_value_error_if_neither_bins_or_lengths_provided(
        self,
    ) -> None:
        with self.assertRaisesRegex(
            ValueError,
            "Please set either bins or lengths to initialize an ImplicitronRayBundle.",
        ):
            ImplicitronRayBundle(
                origins=torch.rand(2, 3, 4, 3),
                directions=torch.rand(2, 3, 4, 3),
                lengths=None,
                xys=torch.rand(2, 3, 4, 2),
                bins=None,
            )

    def test_conical_frustum_to_gaussian(self) -> None:
        origins = torch.zeros(3, 3, 3)
        directions = torch.tensor(
            [
                [[0, 0, 0], [1, 0, 0], [3, 0, 0]],
                [[0, 0.25, 0], [1, 0.25, 0], [3, 0.25, 0]],
                [[0, 1, 0], [1, 1, 0], [3, 1, 0]],
            ]
        )
        bins = torch.tensor(
            [
                [[0.5, 1.5], [0.3, 0.7], [0.3, 0.7]],
                [[0.5, 1.5], [0.3, 0.7], [0.3, 0.7]],
                [[0.5, 1.5], [0.3, 0.7], [0.3, 0.7]],
            ]
        )
        # see test_compute_pixel_radii_from_ray_direction
        radii = torch.tensor(
            [
                [1.25, 2.25, 2.25],
                [1.75, 2.75, 2.75],
                [1.75, 2.75, 2.75],
            ]
        )
        radii = radii[..., None] / 12**0.5

        # The expected mean and diagonal covariance have been computed
        # by hand from the official code of MipNerf.
        # https://github.com/google/mipnerf/blob/84c969e0a623edd183b75693aed72a7e7c22902d/internal/mip.py#L125
        # mean, cov_diag = cast_rays(length, origins, directions, radii, 'cone', diag=True)

        expected_mean = torch.tensor(
            [
                [
                    [[0.0, 0.0, 0.0]],
                    [[0.5506329, 0.0, 0.0]],
                    [[1.6518986, 0.0, 0.0]],
                ],
                [
                    [[0.0, 0.28846154, 0.0]],
                    [[0.5506329, 0.13765822, 0.0]],
                    [[1.6518986, 0.13765822, 0.0]],
                ],
                [
                    [[0.0, 1.1538461, 0.0]],
                    [[0.5506329, 0.5506329, 0.0]],
                    [[1.6518986, 0.5506329, 0.0]],
                ],
            ]
        )
        expected_diag_cov = torch.tensor(
            [
                [
                    [[0.04544772, 0.04544772, 0.04544772]],
                    [[0.01130973, 0.03317059, 0.03317059]],
                    [[0.10178753, 0.03317059, 0.03317059]],
                ],
                [
                    [[0.08907752, 0.00404956, 0.08907752]],
                    [[0.0142245, 0.04734321, 0.04955113]],
                    [[0.10212927, 0.04991625, 0.04955113]],
                ],
                [
                    [[0.08907752, 0.0647929, 0.08907752]],
                    [[0.03608529, 0.03608529, 0.04955113]],
                    [[0.10674264, 0.05590574, 0.04955113]],
                ],
            ]
        )

        ray = ImplicitronRayBundle(
            origins=origins,
            directions=directions,
            bins=bins,
            lengths=None,
            pixel_radii_2d=radii,
            xys=None,
        )
        mean, diag_cov = conical_frustum_to_gaussian(ray)

        self.assertClose(mean, expected_mean)
        self.assertClose(diag_cov, expected_diag_cov)

    def test_scale_conical_frustum_to_gaussian(self) -> None:
        origins = torch.zeros(2, 2, 3)
        directions = torch.Tensor(
            [
                [[0, 1, 0], [0, 0, 1]],
                [[0, 1, 0], [0, 0, 1]],
            ]
        )
        bins = torch.Tensor(
            [
                [[0.5, 1.5], [0.3, 0.7]],
                [[0.5, 1.5], [0.3, 0.7]],
            ]
        )
        radii = torch.ones(2, 2, 1)

        ray = ImplicitronRayBundle(
            origins=origins,
            directions=directions,
            bins=bins,
            pixel_radii_2d=radii,
            lengths=None,
            xys=None,
        )

        mean, diag_cov = conical_frustum_to_gaussian(ray)

        scaling_factor = 2.5
        ray = ImplicitronRayBundle(
            origins=origins,
            directions=directions,
            bins=bins * scaling_factor,
            pixel_radii_2d=radii,
            lengths=None,
            xys=None,
        )
        mean_scaled, diag_cov_scaled = conical_frustum_to_gaussian(ray)
        np.testing.assert_allclose(mean * scaling_factor, mean_scaled)
        np.testing.assert_allclose(
            diag_cov * scaling_factor**2, diag_cov_scaled, atol=1e-6
        )

    def test_approximate_conical_frustum_as_gaussian(self) -> None:
        """Ensure that the computation modularity in our function is well done."""
        bins = torch.Tensor([[0.5, 1.5], [0.3, 0.7]])
        radii = torch.Tensor([[1.0], [1.0]])
        t_mean, t_var, r_var = approximate_conical_frustum_as_gaussians(bins, radii)

        self.assertEqual(t_mean.shape, (2, 1))
        self.assertEqual(t_var.shape, (2, 1))
        self.assertEqual(r_var.shape, (2, 1))

        mu = np.array([[1.0], [0.5]])
        delta = np.array([[0.5], [0.2]])

        np.testing.assert_allclose(
            mu + (2 * mu * delta**2) / (3 * mu**2 + delta**2), t_mean.numpy()
        )
        np.testing.assert_allclose(
            (delta**2) / 3
            - (4 / 15)
            * ((delta**4 * (12 * mu**2 - delta**2)) / (3 * mu**2 + delta**2) ** 2),
            t_var.numpy(),
        )
        np.testing.assert_allclose(
            radii**2
            * (
                (mu**2) / 4
                + (5 / 12) * delta**2
                - 4 / 15 * (delta**4) / (3 * mu**2 + delta**2)
            ),
            r_var.numpy(),
        )

    def test_compute_3d_diagonal_covariance_gaussian(self) -> None:
        ray_directions = torch.Tensor([[0, 0, 1]])
        t_var = torch.Tensor([0.5, 0.5, 1])
        r_var = torch.Tensor([0.6, 0.3, 0.4])
        expected_diag_cov = np.array(
            [
                [
                    # t_cov_diag + xy_cov_diag
                    [0.0 + 0.6, 0.0 + 0.6, 0.5 + 0.0],
                    [0.0 + 0.3, 0.0 + 0.3, 0.5 + 0.0],
                    [0.0 + 0.4, 0.0 + 0.4, 1.0 + 0.0],
                ]
            ]
        )
        diag_cov = compute_3d_diagonal_covariance_gaussian(ray_directions, t_var, r_var)
        np.testing.assert_allclose(diag_cov.numpy(), expected_diag_cov)

    def test_conical_frustum_to_gaussian_raise_valueerror(self) -> None:
        lengths = torch.linspace(0, 1, steps=6)
        directions = torch.tensor([0, 0, 1])
        origins = torch.tensor([1, 1, 1])
        ray = ImplicitronRayBundle(
            origins=origins, directions=directions, lengths=lengths, xys=None
        )

        expected_error_message = (
            "RayBundle pixel_radii_2d or bins have not been provided."
            " Look at pytorch3d.renderer.implicit.renderer.ray_sampler::"
            "AbstractMaskRaySampler to see how to compute them. Have you forgot to set"
            "`cast_ray_bundle_as_cone` to True?"
        )

        with self.assertRaisesRegex(ValueError, expected_error_message):
            _ = conical_frustum_to_gaussian(ray)

        # Ensure message is coherent with AbstractMaskRaySampler
        class FakeRaySampler(AbstractMaskRaySampler):
            def _get_min_max_depth_bounds(self, *args):
                return None

        message_assertion = (
            "If cast_ray_bundle_as_cone has been removed please update the doc"
            "conical_frustum_to_gaussian"
        )
        self.assertIsNotNone(
            getattr(FakeRaySampler(), "cast_ray_bundle_as_cone", None),
            message_assertion,
        )