File size: 20,849 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import logging
import os
import unittest
from collections import Counter

import pkg_resources

import torch

from pytorch3d.implicitron.dataset.sql_dataset import SqlIndexDataset

NO_BLOBS_KWARGS = {
    "dataset_root": "",
    "load_images": False,
    "load_depths": False,
    "load_masks": False,
    "load_depth_masks": False,
    "box_crop": False,
}

logger = logging.getLogger("pytorch3d.implicitron.dataset.sql_dataset")
sh = logging.StreamHandler()
logger.addHandler(sh)
logger.setLevel(logging.DEBUG)


DATASET_ROOT = pkg_resources.resource_filename(__name__, "data/sql_dataset")
METADATA_FILE = os.path.join(DATASET_ROOT, "sql_dataset_100.sqlite")
SET_LIST_FILE = os.path.join(DATASET_ROOT, "set_lists_100.json")


class TestSqlDataset(unittest.TestCase):
    def test_basic(self, sequence="cat1_seq2", frame_number=4):
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        self.assertEqual(len(dataset), 100)

        # check the items are consecutive
        past_sequences = set()
        last_frame_number = -1
        last_sequence = ""
        for i in range(len(dataset)):
            item = dataset[i]

            if item.frame_number == 0:
                self.assertNotIn(item.sequence_name, past_sequences)
                past_sequences.add(item.sequence_name)
                last_sequence = item.sequence_name
            else:
                self.assertEqual(item.sequence_name, last_sequence)
                self.assertEqual(item.frame_number, last_frame_number + 1)

            last_frame_number = item.frame_number

        # test indexing
        with self.assertRaises(IndexError):
            dataset[len(dataset) + 1]

        # test sequence-frame indexing
        item = dataset[sequence, frame_number]
        self.assertEqual(item.sequence_name, sequence)
        self.assertEqual(item.frame_number, frame_number)

        with self.assertRaises(IndexError):
            dataset[sequence, 13]

    def test_filter_empty_masks(self):
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=True,
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        self.assertEqual(len(dataset), 78)

    def test_pick_frames_sql_clause(self):
        dataset_no_empty_masks = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=True,
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            pick_frames_sql_clause="_mask_mass IS NULL OR _mask_mass > 0",
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        # check the datasets are equal
        self.assertEqual(len(dataset), len(dataset_no_empty_masks))
        for i in range(len(dataset)):
            item_nem = dataset_no_empty_masks[i]
            item = dataset[i]
            self.assertEqual(item_nem.image_path, item.image_path)

        # remove_empty_masks together with the custom criterion
        dataset_ts = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=True,
            pick_frames_sql_clause="frame_timestamp < 0.15",
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )
        self.assertEqual(len(dataset_ts), 19)

    def test_limit_categories(self, category="cat0"):
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            pick_categories=[category],
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        self.assertEqual(len(dataset), 50)
        for i in range(len(dataset)):
            self.assertEqual(dataset[i].sequence_category, category)

    def test_limit_sequences(self, num_sequences=3):
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            limit_sequences_to=num_sequences,
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        self.assertEqual(len(dataset), 10 * num_sequences)

        def delist(sequence_name):
            return sequence_name if isinstance(sequence_name, str) else sequence_name[0]

        unique_seqs = {delist(dataset[i].sequence_name) for i in range(len(dataset))}
        self.assertEqual(len(unique_seqs), num_sequences)

    def test_pick_exclude_sequencess(self, sequence="cat1_seq2"):
        # pick sequence
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            pick_sequences=[sequence],
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        self.assertEqual(len(dataset), 10)
        unique_seqs = {dataset[i].sequence_name for i in range(len(dataset))}
        self.assertCountEqual(unique_seqs, {sequence})

        item = dataset[sequence, 0]
        self.assertEqual(item.sequence_name, sequence)
        self.assertEqual(item.frame_number, 0)

        # exclude sequence
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            exclude_sequences=[sequence],
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        self.assertEqual(len(dataset), 90)
        unique_seqs = {dataset[i].sequence_name for i in range(len(dataset))}
        self.assertNotIn(sequence, unique_seqs)

        with self.assertRaises(IndexError):
            dataset[sequence, 0]

    def test_limit_frames(self, num_frames=13):
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            limit_to=num_frames,
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        self.assertEqual(len(dataset), num_frames)
        unique_seqs = {dataset[i].sequence_name for i in range(len(dataset))}
        self.assertEqual(len(unique_seqs), 2)

        # test when the limit is not binding
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            limit_to=1000,
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        self.assertEqual(len(dataset), 100)

    def test_limit_frames_per_sequence(self, num_frames=2):
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            n_frames_per_sequence=num_frames,
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        self.assertEqual(len(dataset), num_frames * 10)
        seq_counts = Counter(dataset[i].sequence_name for i in range(len(dataset)))
        self.assertEqual(len(seq_counts), 10)
        self.assertCountEqual(
            set(seq_counts.values()), {2}
        )  # all counts are num_frames

        with self.assertRaises(IndexError):
            dataset[next(iter(seq_counts)), num_frames + 1]

        # test when the limit is not binding
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            n_frames_per_sequence=13,
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )
        self.assertEqual(len(dataset), 100)

    def test_limit_sequence_per_category(self, num_sequences=2):
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            limit_sequences_per_category_to=num_sequences,
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        self.assertEqual(len(dataset), num_sequences * 10 * 2)
        seq_names = list(dataset.sequence_names())
        self.assertEqual(len(seq_names), num_sequences * 2)
        # check that we respect the row order
        for seq_name in seq_names:
            self.assertLess(int(seq_name[-1]), num_sequences)

        # test when the limit is not binding
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            limit_sequences_per_category_to=13,
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )
        self.assertEqual(len(dataset), 100)

    def test_filter_medley(self):
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=True,
            pick_categories=["cat1"],
            exclude_sequences=["cat1_seq0"],  # retaining "cat1_seq1" and on
            limit_sequences_to=2,  # retaining "cat1_seq1" and "cat1_seq2"
            limit_to=14,  # retaining full "cat1_seq1" and 4 from "cat1_seq2"
            n_frames_per_sequence=6,  # cutting "cat1_seq1" to 6 frames
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        # result: preserved 6 frames from cat1_seq1 and 4 from cat1_seq2
        seq_counts = Counter(dataset[i].sequence_name for i in range(len(dataset)))
        self.assertCountEqual(seq_counts.keys(), ["cat1_seq1", "cat1_seq2"])
        self.assertEqual(seq_counts["cat1_seq1"], 6)
        self.assertEqual(seq_counts["cat1_seq2"], 4)

    def test_subsets_trivial(self):
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            subset_lists_file=SET_LIST_FILE,
            limit_to=100,  # force sorting
            subsets=["train", "test"],
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        self.assertEqual(len(dataset), 100)

        # check the items are consecutive
        past_sequences = set()
        last_frame_number = -1
        last_sequence = ""
        for i in range(len(dataset)):
            item = dataset[i]

            if item.frame_number == 0:
                self.assertNotIn(item.sequence_name, past_sequences)
                past_sequences.add(item.sequence_name)
                last_sequence = item.sequence_name
            else:
                self.assertEqual(item.sequence_name, last_sequence)
                self.assertEqual(item.frame_number, last_frame_number + 1)

            last_frame_number = item.frame_number

    def test_subsets_filter_empty_masks(self):
        # we need to test this case as it uses quite different logic with `df.drop()`
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=True,
            subset_lists_file=SET_LIST_FILE,
            subsets=["train", "test"],
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        self.assertEqual(len(dataset), 78)

    def test_subsets_pick_frames_sql_clause(self):
        dataset_no_empty_masks = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=True,
            subset_lists_file=SET_LIST_FILE,
            subsets=["train", "test"],
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            pick_frames_sql_clause="_mask_mass IS NULL OR _mask_mass > 0",
            subset_lists_file=SET_LIST_FILE,
            subsets=["train", "test"],
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        # check the datasets are equal
        self.assertEqual(len(dataset), len(dataset_no_empty_masks))
        for i in range(len(dataset)):
            item_nem = dataset_no_empty_masks[i]
            item = dataset[i]
            self.assertEqual(item_nem.image_path, item.image_path)

        # remove_empty_masks together with the custom criterion
        dataset_ts = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=True,
            pick_frames_sql_clause="frame_timestamp < 0.15",
            subset_lists_file=SET_LIST_FILE,
            subsets=["train", "test"],
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        self.assertEqual(len(dataset_ts), 19)

    def test_single_subset(self):
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            subset_lists_file=SET_LIST_FILE,
            subsets=["train"],
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        self.assertEqual(len(dataset), 50)

        with self.assertRaises(IndexError):
            dataset[51]

        # check the items are consecutive
        past_sequences = set()
        last_frame_number = -1
        last_sequence = ""
        for i in range(len(dataset)):
            item = dataset[i]

            if item.frame_number < 2:
                self.assertNotIn(item.sequence_name, past_sequences)
                past_sequences.add(item.sequence_name)
                last_sequence = item.sequence_name
            else:
                self.assertEqual(item.sequence_name, last_sequence)
                self.assertEqual(item.frame_number, last_frame_number + 2)

            last_frame_number = item.frame_number

        item = dataset[last_sequence, 0]
        self.assertEqual(item.sequence_name, last_sequence)

        with self.assertRaises(IndexError):
            dataset[last_sequence, 1]

    def test_subset_with_filters(self):
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=True,
            subset_lists_file=SET_LIST_FILE,
            subsets=["train"],
            pick_categories=["cat1"],
            exclude_sequences=["cat1_seq0"],  # retaining "cat1_seq1" and on
            limit_sequences_to=2,  # retaining "cat1_seq1" and "cat1_seq2"
            limit_to=7,  # retaining full train set of "cat1_seq1" and 2 from "cat1_seq2"
            n_frames_per_sequence=3,  # cutting "cat1_seq1" to 3 frames
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        # result: preserved 6 frames from cat1_seq1 and 4 from cat1_seq2
        seq_counts = Counter(dataset[i].sequence_name for i in range(len(dataset)))
        self.assertCountEqual(seq_counts.keys(), ["cat1_seq1", "cat1_seq2"])
        self.assertEqual(seq_counts["cat1_seq1"], 3)
        self.assertEqual(seq_counts["cat1_seq2"], 2)

    def test_visitor(self):
        dataset_sorted = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        sequences = dataset_sorted.sequence_names()
        i = 0
        for seq in sequences:
            last_ts = float("-Inf")
            for ts, _, idx in dataset_sorted.sequence_frames_in_order(seq):
                self.assertEqual(i, idx)
                i += 1
                self.assertGreaterEqual(ts, last_ts)
                last_ts = ts

        # test legacy visitor
        old_indices = None
        for seq in sequences:
            last_ts = float("-Inf")
            rows = dataset_sorted._index.index.get_loc(seq)
            indices = list(range(rows.start or 0, rows.stop, rows.step or 1))
            fn_ts_list = dataset_sorted.get_frame_numbers_and_timestamps(indices)
            self.assertEqual(len(fn_ts_list), len(indices))

            if old_indices:
                # check raising if we ask for multiple sequences
                with self.assertRaises(ValueError):
                    dataset_sorted.get_frame_numbers_and_timestamps(
                        indices + old_indices
                    )

            old_indices = indices

    def test_visitor_subsets(self):
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            limit_to=100,  # force sorting
            subset_lists_file=SET_LIST_FILE,
            subsets=["train", "test"],
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        sequences = dataset.sequence_names()
        i = 0
        for seq in sequences:
            last_ts = float("-Inf")
            seq_frames = list(dataset.sequence_frames_in_order(seq))
            self.assertEqual(len(seq_frames), 10)
            for ts, _, idx in seq_frames:
                self.assertEqual(i, idx)
                i += 1
                self.assertGreaterEqual(ts, last_ts)
                last_ts = ts

            last_ts = float("-Inf")
            train_frames = list(dataset.sequence_frames_in_order(seq, "train"))
            self.assertEqual(len(train_frames), 5)
            for ts, _, _ in train_frames:
                self.assertGreaterEqual(ts, last_ts)
                last_ts = ts

    def test_category_to_sequence_names(self):
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            subset_lists_file=SET_LIST_FILE,
            subsets=["train", "test"],
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        cat_to_seqs = dataset.category_to_sequence_names()
        self.assertEqual(len(cat_to_seqs), 2)
        self.assertIn("cat1", cat_to_seqs)
        self.assertEqual(len(cat_to_seqs["cat1"]), 5)

        # check that override preserves the behavior
        cat_to_seqs_base = super(SqlIndexDataset, dataset).category_to_sequence_names()
        self.assertDictEqual(cat_to_seqs, cat_to_seqs_base)

    def test_category_to_sequence_names_filters(self):
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=True,
            subset_lists_file=SET_LIST_FILE,
            exclude_sequences=["cat1_seq0"],
            subsets=["train", "test"],
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        cat_to_seqs = dataset.category_to_sequence_names()
        self.assertEqual(len(cat_to_seqs), 2)
        self.assertIn("cat1", cat_to_seqs)
        self.assertEqual(len(cat_to_seqs["cat1"]), 4)  # minus one

        # check that override preserves the behavior
        cat_to_seqs_base = super(SqlIndexDataset, dataset).category_to_sequence_names()
        self.assertDictEqual(cat_to_seqs, cat_to_seqs_base)

    def test_meta_access(self):
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            subset_lists_file=SET_LIST_FILE,
            subsets=["train"],
            frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS,
        )

        self.assertEqual(len(dataset), 50)

        for idx in [10, ("cat0_seq2", 2)]:
            example_meta = dataset.meta[idx]
            example = dataset[idx]
            self.assertEqual(example_meta.sequence_name, example.sequence_name)
            self.assertEqual(example_meta.frame_number, example.frame_number)
            self.assertEqual(example_meta.frame_timestamp, example.frame_timestamp)
            self.assertEqual(example_meta.sequence_category, example.sequence_category)
            torch.testing.assert_close(example_meta.camera.R, example.camera.R)
            torch.testing.assert_close(example_meta.camera.T, example.camera.T)
            torch.testing.assert_close(
                example_meta.camera.focal_length, example.camera.focal_length
            )
            torch.testing.assert_close(
                example_meta.camera.principal_point, example.camera.principal_point
            )

    def test_meta_access_no_blobs(self):
        dataset = SqlIndexDataset(
            sqlite_metadata_file=METADATA_FILE,
            remove_empty_masks=False,
            subset_lists_file=SET_LIST_FILE,
            subsets=["train"],
            frame_data_builder_FrameDataBuilder_args={
                "dataset_root": ".",
                "box_crop": False,  # required by blob-less accessor
            },
        )

        self.assertIsNone(dataset.meta[0].image_rgb)
        self.assertIsNone(dataset.meta[0].fg_probability)
        self.assertIsNone(dataset.meta[0].depth_map)
        self.assertIsNone(dataset.meta[0].sequence_point_cloud)
        self.assertIsNotNone(dataset.meta[0].camera)