Spaces:
Running
Running
File size: 4,572 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""Test number of channels."""
import logging
import sys
import unittest
from os import path
import torch
from ..common_testing import TestCaseMixin
sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))
devices = [torch.device("cuda"), torch.device("cpu")]
class TestChannels(TestCaseMixin, unittest.TestCase):
"""Test different numbers of channels."""
def test_basic(self):
"""Basic forward test."""
import torch
from pytorch3d.renderer.points.pulsar import Renderer
n_points = 10
width = 1_000
height = 1_000
renderer_1 = Renderer(width, height, n_points, n_channels=1)
renderer_3 = Renderer(width, height, n_points, n_channels=3)
renderer_8 = Renderer(width, height, n_points, n_channels=8)
# Generate sample data.
torch.manual_seed(1)
vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
vert_col = torch.rand(n_points, 8, dtype=torch.float32)
vert_rad = torch.rand(n_points, dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
renderer_1 = renderer_1.to(device)
renderer_3 = renderer_3.to(device)
renderer_8 = renderer_8.to(device)
result_1 = (
renderer_1.forward(
vert_pos,
vert_col[:, :1],
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
)
.cpu()
.detach()
.numpy()
)
hits_1 = (
renderer_1.forward(
vert_pos,
vert_col[:, :1],
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
.cpu()
.detach()
.numpy()
)
result_3 = (
renderer_3.forward(
vert_pos,
vert_col[:, :3],
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
)
.cpu()
.detach()
.numpy()
)
hits_3 = (
renderer_3.forward(
vert_pos,
vert_col[:, :3],
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
.cpu()
.detach()
.numpy()
)
result_8 = (
renderer_8.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
)
.cpu()
.detach()
.numpy()
)
hits_8 = (
renderer_8.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
.cpu()
.detach()
.numpy()
)
self.assertClose(result_1, result_3[:, :, :1])
self.assertClose(result_3, result_8[:, :, :3])
self.assertClose(hits_1, hits_3)
self.assertClose(hits_8, hits_3)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
unittest.main()
|