File size: 4,572 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

"""Test number of channels."""
import logging
import sys
import unittest
from os import path

import torch

from ..common_testing import TestCaseMixin


sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))
devices = [torch.device("cuda"), torch.device("cpu")]


class TestChannels(TestCaseMixin, unittest.TestCase):
    """Test different numbers of channels."""

    def test_basic(self):
        """Basic forward test."""
        import torch
        from pytorch3d.renderer.points.pulsar import Renderer

        n_points = 10
        width = 1_000
        height = 1_000
        renderer_1 = Renderer(width, height, n_points, n_channels=1)
        renderer_3 = Renderer(width, height, n_points, n_channels=3)
        renderer_8 = Renderer(width, height, n_points, n_channels=8)
        # Generate sample data.
        torch.manual_seed(1)
        vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
        vert_pos[:, 2] += 25.0
        vert_pos[:, :2] -= 5.0
        vert_col = torch.rand(n_points, 8, dtype=torch.float32)
        vert_rad = torch.rand(n_points, dtype=torch.float32)
        cam_params = torch.tensor(
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
        )
        for device in devices:
            vert_pos = vert_pos.to(device)
            vert_col = vert_col.to(device)
            vert_rad = vert_rad.to(device)
            cam_params = cam_params.to(device)
            renderer_1 = renderer_1.to(device)
            renderer_3 = renderer_3.to(device)
            renderer_8 = renderer_8.to(device)
            result_1 = (
                renderer_1.forward(
                    vert_pos,
                    vert_col[:, :1],
                    vert_rad,
                    cam_params,
                    1.0e-1,
                    45.0,
                    percent_allowed_difference=0.01,
                )
                .cpu()
                .detach()
                .numpy()
            )
            hits_1 = (
                renderer_1.forward(
                    vert_pos,
                    vert_col[:, :1],
                    vert_rad,
                    cam_params,
                    1.0e-1,
                    45.0,
                    percent_allowed_difference=0.01,
                    mode=1,
                )
                .cpu()
                .detach()
                .numpy()
            )
            result_3 = (
                renderer_3.forward(
                    vert_pos,
                    vert_col[:, :3],
                    vert_rad,
                    cam_params,
                    1.0e-1,
                    45.0,
                    percent_allowed_difference=0.01,
                )
                .cpu()
                .detach()
                .numpy()
            )
            hits_3 = (
                renderer_3.forward(
                    vert_pos,
                    vert_col[:, :3],
                    vert_rad,
                    cam_params,
                    1.0e-1,
                    45.0,
                    percent_allowed_difference=0.01,
                    mode=1,
                )
                .cpu()
                .detach()
                .numpy()
            )
            result_8 = (
                renderer_8.forward(
                    vert_pos,
                    vert_col,
                    vert_rad,
                    cam_params,
                    1.0e-1,
                    45.0,
                    percent_allowed_difference=0.01,
                )
                .cpu()
                .detach()
                .numpy()
            )
            hits_8 = (
                renderer_8.forward(
                    vert_pos,
                    vert_col,
                    vert_rad,
                    cam_params,
                    1.0e-1,
                    45.0,
                    percent_allowed_difference=0.01,
                    mode=1,
                )
                .cpu()
                .detach()
                .numpy()
            )
            self.assertClose(result_1, result_3[:, :, :1])
            self.assertClose(result_3, result_8[:, :, :3])
            self.assertClose(hits_1, hits_3)
            self.assertClose(hits_8, hits_3)


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    unittest.main()