Spaces:
Running
Running
File size: 7,804 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import json
import unittest
import numpy as np
import torch
from pytorch3d.ops import eyes
from pytorch3d.renderer.points.pulsar import Renderer as PulsarRenderer
from pytorch3d.transforms import so3_exp_map, so3_log_map
from pytorch3d.utils import (
cameras_from_opencv_projection,
opencv_from_cameras_projection,
pulsar_from_opencv_projection,
)
from .common_testing import get_tests_dir, TestCaseMixin
DATA_DIR = get_tests_dir() / "data"
def cv2_project_points(pts, rvec, tvec, camera_matrix):
"""
Reproduces the `cv2.projectPoints` function from OpenCV using PyTorch.
"""
R = so3_exp_map(rvec)
pts_proj_3d = (
camera_matrix.bmm(R.bmm(pts.permute(0, 2, 1)) + tvec[:, :, None])
).permute(0, 2, 1)
depth = pts_proj_3d[..., 2:]
pts_proj_2d = pts_proj_3d[..., :2] / depth
return pts_proj_2d
class TestCameraConversions(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(42)
np.random.seed(42)
def test_cv2_project_points(self):
"""
Tests that the local implementation of cv2_project_points gives the same
restults OpenCV's `cv2.projectPoints`. The check is done against a set
of precomputed results `cv_project_points_precomputed`.
"""
with open(DATA_DIR / "cv_project_points_precomputed.json", "r") as f:
cv_project_points_precomputed = json.load(f)
for test_case in cv_project_points_precomputed:
_pts_proj = cv2_project_points(
**{
k: torch.tensor(test_case[k])[None]
for k in ("pts", "rvec", "tvec", "camera_matrix")
}
)
pts_proj = torch.tensor(test_case["pts_proj"])[None]
self.assertClose(_pts_proj, pts_proj, atol=1e-4)
def test_opencv_conversion(self):
"""
Tests that the cameras converted from opencv to pytorch3d convention
return correct projections of random 3D points. The check is done
against a set of results precomuted using `cv2.projectPoints` function.
"""
device = torch.device("cuda:0")
image_size = [[480, 640]] * 4
R = [
[
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0],
],
[
[1.0, 0.0, 0.0],
[0.0, 0.0, -1.0],
[0.0, 1.0, 0.0],
],
[
[0.0, 0.0, 1.0],
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
],
[
[0.0, 0.0, 1.0],
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
],
]
tvec = [
[0.0, 0.0, 3.0],
[0.3, -0.3, 3.0],
[-0.15, 0.1, 4.0],
[0.0, 0.0, 4.0],
]
focal_length = [
[100.0, 100.0],
[115.0, 115.0],
[105.0, 105.0],
[120.0, 120.0],
]
# These values are in y, x format, but they should be in x, y format.
# The tests work like this because they only test for consistency,
# but this format is misleading.
principal_point = [
[240, 320],
[240.5, 320.3],
[241, 318],
[242, 322],
]
principal_point, focal_length, R, tvec, image_size = [
torch.tensor(x, device=device)
for x in (principal_point, focal_length, R, tvec, image_size)
]
camera_matrix = eyes(dim=3, N=4, device=device)
camera_matrix[:, 0, 0], camera_matrix[:, 1, 1] = (
focal_length[:, 0],
focal_length[:, 1],
)
camera_matrix[:, :2, 2] = principal_point
pts = torch.nn.functional.normalize(
torch.randn(4, 1000, 3, device=device), dim=-1
)
# project the 3D points with the opencv projection function
rvec = so3_log_map(R)
pts_proj_opencv = cv2_project_points(pts, rvec, tvec, camera_matrix)
# make the pytorch3d cameras
cameras_opencv_to_pytorch3d = cameras_from_opencv_projection(
R, tvec, camera_matrix, image_size
)
self.assertEqual(cameras_opencv_to_pytorch3d.device, device)
# project the 3D points with converted cameras to screen space.
pts_proj_pytorch3d_screen = cameras_opencv_to_pytorch3d.transform_points_screen(
pts
)[..., :2]
# compare to the cached projected points
self.assertClose(pts_proj_opencv, pts_proj_pytorch3d_screen, atol=1e-5)
# Check the inverse.
R_i, tvec_i, camera_matrix_i = opencv_from_cameras_projection(
cameras_opencv_to_pytorch3d, image_size
)
self.assertClose(R, R_i)
self.assertClose(tvec, tvec_i)
self.assertClose(camera_matrix, camera_matrix_i)
def test_pulsar_conversion(self):
"""
Tests that the cameras converted from opencv to pulsar convention
return correct projections of random 3D points. The check is done
against a set of results precomputed using `cv2.projectPoints` function.
"""
image_size = [[480, 640]]
R = [
[
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0],
],
[
[0.1968, -0.6663, -0.7192],
[0.7138, -0.4055, 0.5710],
[-0.6721, -0.6258, 0.3959],
],
]
tvec = [
[10.0, 10.0, 3.0],
[-0.0, -0.0, 20.0],
]
focal_length = [
[100.0, 100.0],
[10.0, 10.0],
]
principal_point = [
[320, 240],
[320, 240],
]
principal_point, focal_length, R, tvec, image_size = [
torch.FloatTensor(x)
for x in (principal_point, focal_length, R, tvec, image_size)
]
camera_matrix = eyes(dim=3, N=2)
camera_matrix[:, 0, 0] = focal_length[:, 0]
camera_matrix[:, 1, 1] = focal_length[:, 1]
camera_matrix[:, :2, 2] = principal_point
rvec = so3_log_map(R)
pts = torch.tensor(
[[[0.0, 0.0, 120.0]], [[0.0, 0.0, 120.0]]], dtype=torch.float32
)
radii = torch.tensor([[1e-5], [1e-5]], dtype=torch.float32)
col = torch.zeros((2, 1, 1), dtype=torch.float32)
# project the 3D points with the opencv projection function
pts_proj_opencv = cv2_project_points(pts, rvec, tvec, camera_matrix)
pulsar_cam = pulsar_from_opencv_projection(
R, tvec, camera_matrix, image_size, znear=100.0
)
pulsar_rend = PulsarRenderer(
640, 480, 1, right_handed_system=False, n_channels=1
)
rendered = torch.flip(
pulsar_rend(
pts,
col,
radii,
pulsar_cam,
1e-5,
max_depth=150.0,
min_depth=100.0,
),
dims=(1,),
)
for batch_id in range(2):
point_pos = torch.where(rendered[batch_id] == rendered[batch_id].min())
point_pos = point_pos[1][0], point_pos[0][0]
self.assertLess(
torch.abs(point_pos[0] - pts_proj_opencv[batch_id, 0, 0]), 2
)
self.assertLess(
torch.abs(point_pos[1] - pts_proj_opencv[batch_id, 0, 1]), 2
)
|