File size: 7,804 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.


import json
import unittest

import numpy as np
import torch
from pytorch3d.ops import eyes
from pytorch3d.renderer.points.pulsar import Renderer as PulsarRenderer
from pytorch3d.transforms import so3_exp_map, so3_log_map
from pytorch3d.utils import (
    cameras_from_opencv_projection,
    opencv_from_cameras_projection,
    pulsar_from_opencv_projection,
)

from .common_testing import get_tests_dir, TestCaseMixin


DATA_DIR = get_tests_dir() / "data"


def cv2_project_points(pts, rvec, tvec, camera_matrix):
    """
    Reproduces the `cv2.projectPoints` function from OpenCV using PyTorch.
    """
    R = so3_exp_map(rvec)
    pts_proj_3d = (
        camera_matrix.bmm(R.bmm(pts.permute(0, 2, 1)) + tvec[:, :, None])
    ).permute(0, 2, 1)
    depth = pts_proj_3d[..., 2:]
    pts_proj_2d = pts_proj_3d[..., :2] / depth
    return pts_proj_2d


class TestCameraConversions(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)

    def test_cv2_project_points(self):
        """
        Tests that the local implementation of cv2_project_points gives the same
        restults OpenCV's `cv2.projectPoints`. The check is done against a set
        of precomputed results `cv_project_points_precomputed`.
        """
        with open(DATA_DIR / "cv_project_points_precomputed.json", "r") as f:
            cv_project_points_precomputed = json.load(f)

        for test_case in cv_project_points_precomputed:
            _pts_proj = cv2_project_points(
                **{
                    k: torch.tensor(test_case[k])[None]
                    for k in ("pts", "rvec", "tvec", "camera_matrix")
                }
            )
            pts_proj = torch.tensor(test_case["pts_proj"])[None]
            self.assertClose(_pts_proj, pts_proj, atol=1e-4)

    def test_opencv_conversion(self):
        """
        Tests that the cameras converted from opencv to pytorch3d convention
        return correct projections of random 3D points. The check is done
        against a set of results precomuted using `cv2.projectPoints` function.
        """
        device = torch.device("cuda:0")
        image_size = [[480, 640]] * 4
        R = [
            [
                [1.0, 0.0, 0.0],
                [0.0, 1.0, 0.0],
                [0.0, 0.0, 1.0],
            ],
            [
                [1.0, 0.0, 0.0],
                [0.0, 0.0, -1.0],
                [0.0, 1.0, 0.0],
            ],
            [
                [0.0, 0.0, 1.0],
                [1.0, 0.0, 0.0],
                [0.0, 1.0, 0.0],
            ],
            [
                [0.0, 0.0, 1.0],
                [1.0, 0.0, 0.0],
                [0.0, 1.0, 0.0],
            ],
        ]

        tvec = [
            [0.0, 0.0, 3.0],
            [0.3, -0.3, 3.0],
            [-0.15, 0.1, 4.0],
            [0.0, 0.0, 4.0],
        ]
        focal_length = [
            [100.0, 100.0],
            [115.0, 115.0],
            [105.0, 105.0],
            [120.0, 120.0],
        ]
        # These values are in y, x format, but they should be in x, y format.
        # The tests work like this because they only test for consistency,
        # but this format is misleading.
        principal_point = [
            [240, 320],
            [240.5, 320.3],
            [241, 318],
            [242, 322],
        ]

        principal_point, focal_length, R, tvec, image_size = [
            torch.tensor(x, device=device)
            for x in (principal_point, focal_length, R, tvec, image_size)
        ]
        camera_matrix = eyes(dim=3, N=4, device=device)
        camera_matrix[:, 0, 0], camera_matrix[:, 1, 1] = (
            focal_length[:, 0],
            focal_length[:, 1],
        )
        camera_matrix[:, :2, 2] = principal_point

        pts = torch.nn.functional.normalize(
            torch.randn(4, 1000, 3, device=device), dim=-1
        )

        # project the 3D points with the opencv projection function
        rvec = so3_log_map(R)
        pts_proj_opencv = cv2_project_points(pts, rvec, tvec, camera_matrix)

        # make the pytorch3d cameras
        cameras_opencv_to_pytorch3d = cameras_from_opencv_projection(
            R, tvec, camera_matrix, image_size
        )
        self.assertEqual(cameras_opencv_to_pytorch3d.device, device)

        # project the 3D points with converted cameras to screen space.
        pts_proj_pytorch3d_screen = cameras_opencv_to_pytorch3d.transform_points_screen(
            pts
        )[..., :2]

        # compare to the cached projected points
        self.assertClose(pts_proj_opencv, pts_proj_pytorch3d_screen, atol=1e-5)

        # Check the inverse.
        R_i, tvec_i, camera_matrix_i = opencv_from_cameras_projection(
            cameras_opencv_to_pytorch3d, image_size
        )
        self.assertClose(R, R_i)
        self.assertClose(tvec, tvec_i)
        self.assertClose(camera_matrix, camera_matrix_i)

    def test_pulsar_conversion(self):
        """
        Tests that the cameras converted from opencv to pulsar convention
        return correct projections of random 3D points. The check is done
        against a set of results precomputed using `cv2.projectPoints` function.
        """
        image_size = [[480, 640]]
        R = [
            [
                [1.0, 0.0, 0.0],
                [0.0, 1.0, 0.0],
                [0.0, 0.0, 1.0],
            ],
            [
                [0.1968, -0.6663, -0.7192],
                [0.7138, -0.4055, 0.5710],
                [-0.6721, -0.6258, 0.3959],
            ],
        ]
        tvec = [
            [10.0, 10.0, 3.0],
            [-0.0, -0.0, 20.0],
        ]
        focal_length = [
            [100.0, 100.0],
            [10.0, 10.0],
        ]
        principal_point = [
            [320, 240],
            [320, 240],
        ]

        principal_point, focal_length, R, tvec, image_size = [
            torch.FloatTensor(x)
            for x in (principal_point, focal_length, R, tvec, image_size)
        ]
        camera_matrix = eyes(dim=3, N=2)
        camera_matrix[:, 0, 0] = focal_length[:, 0]
        camera_matrix[:, 1, 1] = focal_length[:, 1]
        camera_matrix[:, :2, 2] = principal_point
        rvec = so3_log_map(R)
        pts = torch.tensor(
            [[[0.0, 0.0, 120.0]], [[0.0, 0.0, 120.0]]], dtype=torch.float32
        )
        radii = torch.tensor([[1e-5], [1e-5]], dtype=torch.float32)
        col = torch.zeros((2, 1, 1), dtype=torch.float32)

        # project the 3D points with the opencv projection function
        pts_proj_opencv = cv2_project_points(pts, rvec, tvec, camera_matrix)
        pulsar_cam = pulsar_from_opencv_projection(
            R, tvec, camera_matrix, image_size, znear=100.0
        )
        pulsar_rend = PulsarRenderer(
            640, 480, 1, right_handed_system=False, n_channels=1
        )
        rendered = torch.flip(
            pulsar_rend(
                pts,
                col,
                radii,
                pulsar_cam,
                1e-5,
                max_depth=150.0,
                min_depth=100.0,
            ),
            dims=(1,),
        )
        for batch_id in range(2):
            point_pos = torch.where(rendered[batch_id] == rendered[batch_id].min())
            point_pos = point_pos[1][0], point_pos[0][0]
            self.assertLess(
                torch.abs(point_pos[0] - pts_proj_opencv[batch_id, 0, 0]), 2
            )
            self.assertLess(
                torch.abs(point_pos[1] - pts_proj_opencv[batch_id, 0, 1]), 2
            )