File size: 7,414 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import unittest

import torch
import torch.nn as nn
from pytorch3d import _C
from pytorch3d.ops.graph_conv import gather_scatter, gather_scatter_python, GraphConv
from pytorch3d.structures.meshes import Meshes
from pytorch3d.utils import ico_sphere

from .common_testing import get_random_cuda_device, TestCaseMixin


class TestGraphConv(TestCaseMixin, unittest.TestCase):
    def test_undirected(self):
        dtype = torch.float32
        device = get_random_cuda_device()
        verts = torch.tensor(
            [[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=dtype, device=device
        )
        edges = torch.tensor([[0, 1], [0, 2]], device=device)
        w0 = torch.tensor([[1, 1, 1]], dtype=dtype, device=device)
        w1 = torch.tensor([[-1, -1, -1]], dtype=dtype, device=device)

        expected_y = torch.tensor(
            [
                [1 + 2 + 3 - 4 - 5 - 6 - 7 - 8 - 9],
                [4 + 5 + 6 - 1 - 2 - 3],
                [7 + 8 + 9 - 1 - 2 - 3],
            ],
            dtype=dtype,
            device=device,
        )

        conv = GraphConv(3, 1, directed=False).to(device)
        conv.w0.weight.data.copy_(w0)
        conv.w0.bias.data.zero_()
        conv.w1.weight.data.copy_(w1)
        conv.w1.bias.data.zero_()

        y = conv(verts, edges)
        self.assertClose(y, expected_y)

    def test_no_edges(self):
        dtype = torch.float32
        verts = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=dtype)
        edges = torch.zeros(0, 2, dtype=torch.int64)
        w0 = torch.tensor([[1, -1, -2]], dtype=dtype)
        expected_y = torch.tensor(
            [[1 - 2 - 2 * 3], [4 - 5 - 2 * 6], [7 - 8 - 2 * 9]], dtype=dtype
        )
        conv = GraphConv(3, 1).to(dtype)
        conv.w0.weight.data.copy_(w0)
        conv.w0.bias.data.zero_()

        y = conv(verts, edges)
        self.assertClose(y, expected_y)

    def test_no_verts_and_edges(self):
        dtype = torch.float32
        verts = torch.tensor([], dtype=dtype, requires_grad=True)
        edges = torch.tensor([], dtype=dtype)
        w0 = torch.tensor([[1, -1, -2]], dtype=dtype)

        conv = GraphConv(3, 1).to(dtype)
        conv.w0.weight.data.copy_(w0)
        conv.w0.bias.data.zero_()
        y = conv(verts, edges)
        self.assertClose(y, torch.zeros((0, 1)))
        self.assertTrue(y.requires_grad)

        conv2 = GraphConv(3, 2).to(dtype)
        conv2.w0.weight.data.copy_(w0.repeat(2, 1))
        conv2.w0.bias.data.zero_()
        y = conv2(verts, edges)
        self.assertClose(y, torch.zeros((0, 2)))
        self.assertTrue(y.requires_grad)

    def test_directed(self):
        dtype = torch.float32
        verts = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=dtype)
        edges = torch.tensor([[0, 1], [0, 2]])
        w0 = torch.tensor([[1, 1, 1]], dtype=dtype)
        w1 = torch.tensor([[-1, -1, -1]], dtype=dtype)

        expected_y = torch.tensor(
            [[1 + 2 + 3 - 4 - 5 - 6 - 7 - 8 - 9], [4 + 5 + 6], [7 + 8 + 9]], dtype=dtype
        )

        conv = GraphConv(3, 1, directed=True).to(dtype)
        conv.w0.weight.data.copy_(w0)
        conv.w0.bias.data.zero_()
        conv.w1.weight.data.copy_(w1)
        conv.w1.bias.data.zero_()

        y = conv(verts, edges)
        self.assertClose(y, expected_y)

    def test_backward(self):
        device = get_random_cuda_device()
        mesh = ico_sphere()
        verts = mesh.verts_packed()
        edges = mesh.edges_packed()
        verts_cpu = verts.clone()
        edges_cpu = edges.clone()
        verts_cuda = verts.clone().to(device)
        edges_cuda = edges.clone().to(device)
        verts.requires_grad = True
        verts_cpu.requires_grad = True
        verts_cuda.requires_grad = True

        neighbor_sums_cuda = gather_scatter(verts_cuda, edges_cuda, False)
        neighbor_sums_cpu = gather_scatter(verts_cpu, edges_cpu, False)
        neighbor_sums = gather_scatter_python(verts, edges, False)
        randoms = torch.rand_like(neighbor_sums)
        (neighbor_sums_cuda * randoms.to(device)).sum().backward()
        (neighbor_sums_cpu * randoms).sum().backward()
        (neighbor_sums * randoms).sum().backward()

        self.assertClose(verts.grad, verts_cuda.grad.cpu())
        self.assertClose(verts.grad, verts_cpu.grad)

    def test_repr(self):
        conv = GraphConv(32, 64, directed=True)
        self.assertEqual(repr(conv), "GraphConv(32 -> 64, directed=True)")

    def test_cpu_cuda_tensor_error(self):
        device = get_random_cuda_device()
        verts = torch.tensor(
            [[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float32, device=device
        )
        edges = torch.tensor([[0, 1], [0, 2]])
        conv = GraphConv(3, 1, directed=True).to(torch.float32)
        with self.assertRaises(Exception) as err:
            conv(verts, edges)
        self.assertTrue("tensors must be on the same device." in str(err.exception))

    def test_gather_scatter(self):
        """
        Check gather_scatter cuda and python versions give the same results.
        Check that gather_scatter cuda version throws an error if cpu tensors
        are given as input.
        """
        device = get_random_cuda_device()
        mesh = ico_sphere()
        verts = mesh.verts_packed()
        edges = mesh.edges_packed()
        w0 = nn.Linear(3, 1)
        input = w0(verts)

        # undirected
        output_python = gather_scatter_python(input, edges, False)
        output_cuda = _C.gather_scatter(
            input.to(device=device), edges.to(device=device), False, False
        )
        self.assertClose(output_cuda.cpu(), output_python)

        output_cpu = _C.gather_scatter(input.cpu(), edges.cpu(), False, False)
        self.assertClose(output_cpu, output_python)

        # directed
        output_python = gather_scatter_python(input, edges, True)
        output_cuda = _C.gather_scatter(
            input.to(device=device), edges.to(device=device), True, False
        )
        self.assertClose(output_cuda.cpu(), output_python)
        output_cpu = _C.gather_scatter(input.cpu(), edges.cpu(), True, False)
        self.assertClose(output_cpu, output_python)

    @staticmethod
    def graph_conv_forward_backward(
        gconv_dim,
        num_meshes,
        num_verts,
        num_faces,
        directed: bool,
        backend: str = "cuda",
    ):
        device = torch.device("cuda") if backend == "cuda" else "cpu"
        verts_list = torch.tensor(num_verts * [[0.11, 0.22, 0.33]], device=device).view(
            -1, 3
        )
        faces_list = torch.tensor(num_faces * [[1, 2, 3]], device=device).view(-1, 3)
        meshes = Meshes(num_meshes * [verts_list], num_meshes * [faces_list])
        gconv = GraphConv(gconv_dim, gconv_dim, directed=directed)
        gconv.to(device)
        edges = meshes.edges_packed()
        total_verts = meshes.verts_packed().shape[0]

        # Features.
        x = torch.randn(total_verts, gconv_dim, device=device, requires_grad=True)
        torch.cuda.synchronize()

        def run_graph_conv():
            y1 = gconv(x, edges)
            y1.sum().backward()
            torch.cuda.synchronize()

        return run_graph_conv