Spaces:
Running
Running
File size: 36,088 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import struct
import unittest
from io import BytesIO, StringIO
from tempfile import NamedTemporaryFile, TemporaryFile
import numpy as np
import pytorch3d.io.ply_io
import torch
from iopath.common.file_io import PathManager
from pytorch3d.io import IO
from pytorch3d.io.ply_io import load_ply, save_ply
from pytorch3d.renderer.mesh import TexturesVertex
from pytorch3d.structures import Meshes, Pointclouds
from pytorch3d.utils import torus
from .common_testing import get_tests_dir, TestCaseMixin
global_path_manager = PathManager()
DATA_DIR = get_tests_dir() / "data"
def _load_ply_raw(stream):
return pytorch3d.io.ply_io._load_ply_raw(stream, global_path_manager)
CUBE_PLY_LINES = [
"ply",
"format ascii 1.0",
"comment made by Greg Turk",
"comment this file is a cube",
"element vertex 8",
"property float x",
"property float y",
"property float z",
"element face 6",
"property list uchar int vertex_index",
"end_header",
"0 0 0",
"0 0 1",
"0 1 1",
"0 1 0",
"1 0 0",
"1 0 1",
"1 1 1",
"1 1 0",
"4 0 1 2 3",
"4 7 6 5 4",
"4 0 4 5 1",
"4 1 5 6 2",
"4 2 6 7 3",
"4 3 7 4 0",
]
CUBE_VERTS = [
[0, 0, 0],
[0, 0, 1],
[0, 1, 1],
[0, 1, 0],
[1, 0, 0],
[1, 0, 1],
[1, 1, 1],
[1, 1, 0],
]
CUBE_FACES = [
[0, 1, 2],
[7, 6, 5],
[0, 4, 5],
[1, 5, 6],
[2, 6, 7],
[3, 7, 4],
[0, 2, 3],
[7, 5, 4],
[0, 5, 1],
[1, 6, 2],
[2, 7, 3],
[3, 4, 0],
]
class TestMeshPlyIO(TestCaseMixin, unittest.TestCase):
def test_raw_load_simple_ascii(self):
ply_file = "\n".join(
[
"ply",
"format ascii 1.0",
"comment made by Greg Turk",
"comment this file is a cube",
"element vertex 8",
"property float x",
"property float y",
"property float z",
"element face 6",
"property list uchar int vertex_index",
"element irregular_list 3",
"property list uchar int vertex_index",
"end_header",
"0 0 0",
"0 0 1",
"0 1 1",
"0 1 0",
"1 0 0",
"1 0 1",
"1 1 1",
"1 1 0",
"4 0 1 2 3",
"4 7 6 5 4",
"4 0 4 5 1",
"4 1 5 6 2",
"4 2 6 7 3",
"4 3 7 4 0", # end of faces
"4 0 1 2 3",
"4 7 6 5 4",
"3 4 5 1",
]
)
for line_ending in [None, "\n", "\r\n"]:
if line_ending is None:
stream = StringIO(ply_file)
else:
byte_file = ply_file.encode("ascii")
if line_ending == "\r\n":
byte_file = byte_file.replace(b"\n", b"\r\n")
stream = BytesIO(byte_file)
header, data = _load_ply_raw(stream)
self.assertTrue(header.ascii)
self.assertEqual(len(data), 3)
self.assertTupleEqual(data["face"].shape, (6, 4))
self.assertClose([0, 1, 2, 3], data["face"][0])
self.assertClose([3, 7, 4, 0], data["face"][5])
[vertex0] = data["vertex"]
self.assertTupleEqual(vertex0.shape, (8, 3))
irregular = data["irregular_list"]
self.assertEqual(len(irregular), 3)
self.assertEqual(type(irregular), list)
[x] = irregular[0]
self.assertClose(x, [0, 1, 2, 3])
[x] = irregular[1]
self.assertClose(x, [7, 6, 5, 4])
[x] = irregular[2]
self.assertClose(x, [4, 5, 1])
def test_load_simple_ascii(self):
ply_file = "\n".join(CUBE_PLY_LINES)
for line_ending in [None, "\n", "\r\n"]:
if line_ending is None:
stream = StringIO(ply_file)
else:
byte_file = ply_file.encode("ascii")
if line_ending == "\r\n":
byte_file = byte_file.replace(b"\n", b"\r\n")
stream = BytesIO(byte_file)
verts, faces = load_ply(stream)
self.assertEqual(verts.shape, (8, 3))
self.assertEqual(faces.shape, (12, 3))
self.assertClose(verts, torch.FloatTensor(CUBE_VERTS))
self.assertClose(faces, torch.LongTensor(CUBE_FACES))
def test_pluggable_load_cube(self):
"""
This won't work on Windows due to NamedTemporaryFile being reopened.
Use the testpath package instead?
"""
ply_file = "\n".join(CUBE_PLY_LINES)
io = IO()
with NamedTemporaryFile(mode="w", suffix=".ply") as f:
f.write(ply_file)
f.flush()
mesh = io.load_mesh(f.name)
self.assertClose(mesh.verts_padded(), torch.FloatTensor(CUBE_VERTS)[None])
self.assertClose(mesh.faces_padded(), torch.LongTensor(CUBE_FACES)[None])
device = torch.device("cuda:0")
with NamedTemporaryFile(mode="w", suffix=".ply") as f2:
io.save_mesh(mesh, f2.name)
f2.flush()
mesh2 = io.load_mesh(f2.name, device=device)
self.assertEqual(mesh2.verts_padded().device, device)
self.assertClose(mesh2.verts_padded().cpu(), mesh.verts_padded())
self.assertClose(mesh2.faces_padded().cpu(), mesh.faces_padded())
with NamedTemporaryFile(mode="w") as f3:
with self.assertRaisesRegex(
ValueError, "No mesh interpreter found to write to"
):
io.save_mesh(mesh, f3.name)
with self.assertRaisesRegex(
ValueError, "No mesh interpreter found to read "
):
io.load_mesh(f3.name)
def test_heterogenous_verts_per_face(self):
# The cube but where one face is pentagon not square.
text = CUBE_PLY_LINES.copy()
text[-1] = "5 3 7 4 0 1"
stream = StringIO("\n".join(text))
verts, faces = load_ply(stream)
self.assertEqual(verts.shape, (8, 3))
self.assertEqual(faces.shape, (13, 3))
def test_save_too_many_colors(self):
verts = torch.tensor(
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=torch.float32
)
faces = torch.tensor([[0, 1, 2], [0, 2, 3]])
vert_colors = torch.rand((4, 7))
texture_with_seven_colors = TexturesVertex(verts_features=[vert_colors])
mesh = Meshes(
verts=[verts],
faces=[faces],
textures=texture_with_seven_colors,
)
io = IO()
msg = "Texture will not be saved as it has 7 colors, not 3."
with NamedTemporaryFile(mode="w", suffix=".ply") as f:
with self.assertWarnsRegex(UserWarning, msg):
io.save_mesh(mesh.cuda(), f.name)
def test_save_load_meshes(self):
verts = torch.tensor(
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=torch.float32
)
faces = torch.tensor([[0, 1, 2], [0, 2, 3]])
normals = torch.tensor(
[[0, 1, 0], [1, 0, 0], [1, 4, 1], [1, 0, 0]], dtype=torch.float32
)
vert_colors = torch.rand_like(verts)
texture = TexturesVertex(verts_features=[vert_colors])
for do_textures, do_normals in itertools.product([True, False], [True, False]):
mesh = Meshes(
verts=[verts],
faces=[faces],
textures=texture if do_textures else None,
verts_normals=[normals] if do_normals else None,
)
device = torch.device("cuda:0")
io = IO()
with NamedTemporaryFile(mode="w", suffix=".ply") as f:
io.save_mesh(mesh.cuda(), f.name)
f.flush()
mesh2 = io.load_mesh(f.name, device=device)
self.assertEqual(mesh2.device, device)
mesh2 = mesh2.cpu()
self.assertClose(mesh2.verts_padded(), mesh.verts_padded())
self.assertClose(mesh2.faces_padded(), mesh.faces_padded())
if do_normals:
self.assertTrue(mesh.has_verts_normals())
self.assertTrue(mesh2.has_verts_normals())
self.assertClose(
mesh2.verts_normals_padded(), mesh.verts_normals_padded()
)
else:
self.assertFalse(mesh.has_verts_normals())
self.assertFalse(mesh2.has_verts_normals())
self.assertFalse(torch.allclose(mesh2.verts_normals_padded(), normals))
if do_textures:
self.assertIsInstance(mesh2.textures, TexturesVertex)
self.assertClose(mesh2.textures.verts_features_list()[0], vert_colors)
else:
self.assertIsNone(mesh2.textures)
def test_save_load_with_normals(self):
points = torch.tensor(
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=torch.float32
)
normals = torch.tensor(
[[0, 1, 0], [1, 0, 0], [1, 4, 1], [1, 0, 0]], dtype=torch.float32
)
features = torch.rand_like(points)
for do_features, do_normals in itertools.product([True, False], [True, False]):
cloud = Pointclouds(
points=[points],
features=[features] if do_features else None,
normals=[normals] if do_normals else None,
)
device = torch.device("cuda:0")
io = IO()
with NamedTemporaryFile(mode="w", suffix=".ply") as f:
io.save_pointcloud(cloud.cuda(), f.name)
f.flush()
cloud2 = io.load_pointcloud(f.name, device=device)
self.assertEqual(cloud2.device, device)
cloud2 = cloud2.cpu()
self.assertClose(cloud2.points_padded(), cloud.points_padded())
if do_normals:
self.assertClose(cloud2.normals_padded(), cloud.normals_padded())
else:
self.assertIsNone(cloud.normals_padded())
self.assertIsNone(cloud2.normals_padded())
if do_features:
self.assertClose(cloud2.features_packed(), features)
else:
self.assertIsNone(cloud2.features_packed())
def test_save_ply_invalid_shapes(self):
# Invalid vertices shape
verts = torch.FloatTensor([[0.1, 0.2, 0.3, 0.4]]) # (V, 4)
faces = torch.LongTensor([[0, 1, 2]])
with self.assertRaises(ValueError) as error:
save_ply(BytesIO(), verts, faces)
expected_message = (
"Argument 'verts' should either be empty or of shape (num_verts, 3)."
)
self.assertTrue(expected_message, error.exception)
# Invalid faces shape
verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
faces = torch.LongTensor([[0, 1, 2, 3]]) # (F, 4)
with self.assertRaises(ValueError) as error:
save_ply(BytesIO(), verts, faces)
expected_message = (
"Argument 'faces' should either be empty or of shape (num_faces, 3)."
)
self.assertTrue(expected_message, error.exception)
def test_save_ply_invalid_indices(self):
message_regex = "Faces have invalid indices"
verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
faces = torch.LongTensor([[0, 1, 2]])
with self.assertWarnsRegex(UserWarning, message_regex):
save_ply(BytesIO(), verts, faces)
faces = torch.LongTensor([[-1, 0, 1]])
with self.assertWarnsRegex(UserWarning, message_regex):
save_ply(BytesIO(), verts, faces)
def _test_save_load(self, verts, faces):
f = BytesIO()
save_ply(f, verts, faces)
f.seek(0)
# raise Exception(f.getvalue())
expected_verts, expected_faces = verts, faces
if not len(expected_verts): # Always compare with a (V, 3) tensor
expected_verts = torch.zeros(size=(0, 3), dtype=torch.float32)
if not len(expected_faces): # Always compare with an (F, 3) tensor
expected_faces = torch.zeros(size=(0, 3), dtype=torch.int64)
actual_verts, actual_faces = load_ply(f)
self.assertClose(expected_verts, actual_verts)
if len(actual_verts):
self.assertClose(expected_faces, actual_faces)
else:
self.assertEqual(actual_faces.numel(), 0)
def test_normals_save(self):
verts = torch.tensor(
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=torch.float32
)
faces = torch.tensor([[0, 1, 2], [0, 2, 3]])
normals = torch.tensor(
[[0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=torch.float32
)
file = BytesIO()
save_ply(file, verts=verts, faces=faces, verts_normals=normals)
file.close()
def test_contiguity_unimportant(self):
verts = torch.rand(32, 3)
self._test_save_load(verts, torch.randint(30, size=(10, 3)))
self._test_save_load(verts, torch.randint(30, size=(3, 10)).T)
def test_empty_save_load(self):
# Vertices + empty faces
verts = torch.tensor([[0.1, 0.2, 0.3]])
faces = torch.LongTensor([])
self._test_save_load(verts, faces)
faces = torch.zeros(size=(0, 3), dtype=torch.int64)
self._test_save_load(verts, faces)
# Faces + empty vertices
# => We don't save the faces
verts = torch.FloatTensor([])
faces = torch.LongTensor([[0, 1, 2]])
message_regex = "Empty 'verts' provided"
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts, faces)
verts = torch.zeros(size=(0, 3), dtype=torch.float32)
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts, faces)
# Empty vertices + empty faces
verts0 = torch.FloatTensor([])
faces0 = torch.LongTensor([])
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts0, faces0)
faces3 = torch.zeros(size=(0, 3), dtype=torch.int64)
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts0, faces3)
verts3 = torch.zeros(size=(0, 3), dtype=torch.float32)
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts3, faces0)
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts3, faces3)
def test_simple_save(self):
verts = torch.tensor(
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 2, 0]], dtype=torch.float32
)
faces = torch.tensor([[0, 1, 2], [0, 3, 4]])
for filetype in BytesIO, TemporaryFile:
lengths = {}
for ascii in [True, False]:
file = filetype()
save_ply(file, verts=verts, faces=faces, ascii=ascii)
lengths[ascii] = file.tell()
file.seek(0)
verts2, faces2 = load_ply(file)
self.assertClose(verts, verts2)
self.assertClose(faces, faces2)
file.seek(0)
if ascii:
file.read().decode("ascii")
else:
with self.assertRaises(UnicodeDecodeError):
file.read().decode("ascii")
if filetype is TemporaryFile:
file.close()
self.assertLess(lengths[False], lengths[True], "ascii should be longer")
def test_heterogeneous_property(self):
ply_file_ascii = "\n".join(
[
"ply",
"format ascii 1.0",
"element vertex 8",
"property float x",
"property int y",
"property int z",
"end_header",
"0 0 0",
"0 0 1",
"0 1 1",
"0 1 0",
"1 0 0",
"1 0 1",
"1 1 1",
"1 1 0",
]
)
ply_file_binary = "\n".join(
[
"ply",
"format binary_little_endian 1.0",
"element vertex 8",
"property uchar x",
"property char y",
"property char z",
"end_header",
"",
]
)
data = [0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0]
stream_ascii = StringIO(ply_file_ascii)
stream_binary = BytesIO(ply_file_binary.encode("ascii") + bytes(data))
X = np.array([[0, 0, 0, 0, 1, 1, 1, 1]]).T
YZ = np.array([0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0])
for stream in (stream_ascii, stream_binary):
header, elements = _load_ply_raw(stream)
[x, yz] = elements["vertex"]
self.assertClose(x, X)
self.assertClose(yz, YZ.reshape(8, 2))
def test_load_cloudcompare_pointcloud(self):
"""
Test loading a pointcloud styled like some cloudcompare output.
cloudcompare is an open source 3D point cloud processing software.
"""
header = "\n".join(
[
"ply",
"format binary_little_endian 1.0",
"obj_info Not a key-value pair!",
"element vertex 8",
"property double x",
"property double y",
"property double z",
"property uchar red",
"property uchar green",
"property uchar blue",
"property float my_Favorite",
"end_header",
"",
]
).encode("ascii")
data = struct.pack("<" + "dddBBBf" * 8, *range(56))
io = IO()
with NamedTemporaryFile(mode="wb", suffix=".ply") as f:
f.write(header)
f.write(data)
f.flush()
pointcloud = io.load_pointcloud(f.name)
self.assertClose(
pointcloud.points_padded()[0],
torch.FloatTensor([0, 1, 2]) + 7 * torch.arange(8)[:, None],
)
self.assertClose(
pointcloud.features_padded()[0] * 255,
torch.FloatTensor([3, 4, 5]) + 7 * torch.arange(8)[:, None],
)
def test_load_open3d_mesh(self):
# Header based on issue #1104
header = "\n".join(
[
"ply",
"format binary_little_endian 1.0",
"comment Created by Open3D",
"element vertex 3",
"property double x",
"property double y",
"property double z",
"property double nx",
"property double ny",
"property double nz",
"property uchar red",
"property uchar green",
"property uchar blue",
"element face 1",
"property list uchar uint vertex_indices",
"end_header",
"",
]
).encode("ascii")
vert_data = struct.pack("<" + "ddddddBBB" * 3, *range(9 * 3))
face_data = struct.pack("<" + "BIII", 3, 0, 1, 2)
io = IO()
with NamedTemporaryFile(mode="wb", suffix=".ply") as f:
f.write(header)
f.write(vert_data)
f.write(face_data)
f.flush()
mesh = io.load_mesh(f.name)
self.assertClose(mesh.faces_padded(), torch.arange(3)[None, None])
self.assertClose(
mesh.verts_padded(),
(torch.arange(3) + 9.0 * torch.arange(3)[:, None])[None],
)
def test_save_pointcloud(self):
header = "\n".join(
[
"ply",
"format binary_little_endian 1.0",
"element vertex 8",
"property float x",
"property float y",
"property float z",
"property float red",
"property float green",
"property float blue",
"end_header",
"",
]
).encode("ascii")
data = struct.pack("<" + "f" * 48, *range(48))
points = torch.FloatTensor([0, 1, 2]) + 6 * torch.arange(8)[:, None]
features_large = torch.FloatTensor([3, 4, 5]) + 6 * torch.arange(8)[:, None]
features = features_large / 255.0
pointcloud_largefeatures = Pointclouds(
points=[points], features=[features_large]
)
pointcloud = Pointclouds(points=[points], features=[features])
io = IO()
with NamedTemporaryFile(mode="rb", suffix=".ply") as f:
io.save_pointcloud(data=pointcloud_largefeatures, path=f.name)
f.flush()
f.seek(0)
actual_data = f.read()
reloaded_pointcloud = io.load_pointcloud(f.name)
self.assertEqual(header + data, actual_data)
self.assertClose(reloaded_pointcloud.points_list()[0], points)
self.assertClose(reloaded_pointcloud.features_list()[0], features_large)
# Test the load-save cycle leaves file completely unchanged
with NamedTemporaryFile(mode="rb", suffix=".ply") as f:
io.save_pointcloud(
data=reloaded_pointcloud,
path=f.name,
)
f.flush()
f.seek(0)
data2 = f.read()
self.assertEqual(data2, actual_data)
with NamedTemporaryFile(mode="r", suffix=".ply") as f:
io.save_pointcloud(
data=pointcloud, path=f.name, binary=False, decimal_places=9
)
reloaded_pointcloud2 = io.load_pointcloud(f.name)
self.assertEqual(f.readline(), "ply\n")
self.assertEqual(f.readline(), "format ascii 1.0\n")
self.assertClose(reloaded_pointcloud2.points_list()[0], points)
self.assertClose(reloaded_pointcloud2.features_list()[0], features)
for binary in [True, False]:
with NamedTemporaryFile(mode="rb", suffix=".ply") as f:
io.save_pointcloud(
data=pointcloud, path=f.name, colors_as_uint8=True, binary=binary
)
f.flush()
f.seek(0)
actual_data = f.read()
reloaded_pointcloud3 = io.load_pointcloud(f.name)
self.assertClose(reloaded_pointcloud3.features_list()[0], features)
self.assertIn(b"property uchar green", actual_data)
# Test the load-save cycle leaves file completely unchanged
with NamedTemporaryFile(mode="rb", suffix=".ply") as f:
io.save_pointcloud(
data=reloaded_pointcloud3,
path=f.name,
binary=binary,
colors_as_uint8=True,
)
f.flush()
f.seek(0)
data2 = f.read()
self.assertEqual(data2, actual_data)
def test_load_pointcloud_bad_order(self):
"""
Ply file with a strange property order
"""
file = "\n".join(
[
"ply",
"format ascii 1.0",
"element vertex 1",
"property uchar green",
"property float x",
"property float z",
"property uchar red",
"property float y",
"property uchar blue",
"end_header",
"1 2 3 4 5 6",
]
)
io = IO()
pointcloud_gpu = io.load_pointcloud(StringIO(file), device="cuda:0")
self.assertEqual(pointcloud_gpu.device, torch.device("cuda:0"))
pointcloud = pointcloud_gpu.to(torch.device("cpu"))
expected_points = torch.tensor([[[2, 5, 3]]], dtype=torch.float32)
expected_features = torch.tensor([[[4, 1, 6]]], dtype=torch.float32) / 255.0
self.assertClose(pointcloud.points_padded(), expected_points)
self.assertClose(pointcloud.features_padded(), expected_features)
def test_load_simple_binary(self):
for big_endian in [True, False]:
verts = (
"0 0 0 " "0 0 1 " "0 1 1 " "0 1 0 " "1 0 0 " "1 0 1 " "1 1 1 " "1 1 0"
).split()
faces = (
"4 0 1 2 3 "
"4 7 6 5 4 "
"4 0 4 5 1 "
"4 1 5 6 2 "
"4 2 6 7 3 "
"4 3 7 4 0 " # end of first 6
"4 0 1 2 3 "
"4 7 6 5 4 "
"3 4 5 1"
).split()
short_one = b"\00\01" if big_endian else b"\01\00"
mixed_data = b"\00\00" b"\03\03" + (short_one + b"\00\01\01\01" b"\00\02")
minus_one_data = b"\xff" * 14
endian_char = ">" if big_endian else "<"
format = (
"format binary_big_endian 1.0"
if big_endian
else "format binary_little_endian 1.0"
)
vertex_pattern = endian_char + "24f"
vertex_data = struct.pack(vertex_pattern, *map(float, verts))
vertex1_pattern = endian_char + "fdffdffdffdffdffdffdffdf"
vertex1_data = struct.pack(vertex1_pattern, *map(float, verts))
face_char_pattern = endian_char + "44b"
face_char_data = struct.pack(face_char_pattern, *map(int, faces))
header = "\n".join(
[
"ply",
format,
"element vertex 8",
"property float x",
"property float32 y",
"property float z",
"element vertex1 8",
"property float x",
"property double y",
"property float z",
"element face 6",
"property list uchar uchar vertex_index",
"element irregular_list 3",
"property list uchar uchar vertex_index",
"element mixed 2",
"property list short uint foo",
"property short bar",
"element minus_ones 1",
"property char 1",
"property uchar 2",
"property short 3",
"property ushort 4",
"property int 5",
"property uint 6",
"end_header\n",
]
)
ply_file = b"".join(
[
header.encode("ascii"),
vertex_data,
vertex1_data,
face_char_data,
mixed_data,
minus_one_data,
]
)
metadata, data = _load_ply_raw(BytesIO(ply_file))
self.assertFalse(metadata.ascii)
self.assertEqual(len(data), 6)
self.assertTupleEqual(data["face"].shape, (6, 4))
self.assertClose([0, 1, 2, 3], data["face"][0])
self.assertClose([3, 7, 4, 0], data["face"][5])
[vertex0] = data["vertex"]
self.assertTupleEqual(vertex0.shape, (8, 3))
self.assertEqual(len(data["vertex1"]), 3)
self.assertClose(vertex0, np.column_stack(data["vertex1"]))
self.assertClose(vertex0.flatten(), list(map(float, verts)))
irregular = data["irregular_list"]
self.assertEqual(len(irregular), 3)
self.assertEqual(type(irregular), list)
[x] = irregular[0]
self.assertClose(x, [0, 1, 2, 3])
[x] = irregular[1]
self.assertClose(x, [7, 6, 5, 4])
[x] = irregular[2]
self.assertClose(x, [4, 5, 1])
mixed = data["mixed"]
self.assertEqual(len(mixed), 2)
self.assertEqual(len(mixed[0]), 2)
self.assertEqual(len(mixed[1]), 2)
self.assertEqual(mixed[0][1], 3 * 256 + 3)
self.assertEqual(len(mixed[0][0]), 0)
self.assertEqual(mixed[1][1], (2 if big_endian else 2 * 256))
base = 1 + 256 + 256 * 256
self.assertEqual(len(mixed[1][0]), 1)
self.assertEqual(mixed[1][0][0], base if big_endian else 256 * base)
self.assertListEqual(
data["minus_ones"], [-1, 255, -1, 65535, -1, 4294967295]
)
def test_load_uvs(self):
io = IO()
mesh = io.load_mesh(DATA_DIR / "uvs.ply")
self.assertEqual(mesh.textures.verts_uvs_padded().shape, (1, 8, 2))
self.assertClose(
mesh.textures.verts_uvs_padded()[0],
torch.tensor([[0, 0]] + [[0.2, 0.3]] * 6 + [[0.4, 0.5]]),
)
self.assertEqual(
mesh.textures.faces_uvs_padded().shape, mesh.faces_padded().shape
)
self.assertEqual(mesh.textures.maps_padded().shape, (1, 512, 512, 3))
def test_bad_ply_syntax(self):
"""Some syntactically bad ply files."""
lines = [
"ply",
"format ascii 1.0",
"comment dashfadskfj;k",
"element vertex 1",
"property float x",
"element listy 1",
"property list uint int x",
"end_header",
"0",
"0",
]
lines2 = lines.copy()
# this is ok
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2[0] = "PLY"
with self.assertRaisesRegex(ValueError, "Invalid file header."):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2[2] = "#this is a comment"
with self.assertRaisesRegex(ValueError, "Invalid line.*"):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2[3] = lines[4]
lines2[4] = lines[3]
with self.assertRaisesRegex(
ValueError, "Encountered property before any element."
):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2[8] = "1 2"
with self.assertRaisesRegex(ValueError, "Inconsistent data for vertex."):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines[:-1]
with self.assertRaisesRegex(ValueError, "Not enough data for listy."):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2[5] = "element listy 2"
with self.assertRaisesRegex(ValueError, "Not enough data for listy."):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2.insert(4, "property short x")
with self.assertRaisesRegex(
ValueError, "Cannot have two properties called x in vertex."
):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2.insert(4, "property zz short")
with self.assertRaisesRegex(ValueError, "Invalid datatype: zz"):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2.append("3")
with self.assertRaisesRegex(ValueError, "Extra data at end of file."):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2.append("comment foo")
with self.assertRaisesRegex(ValueError, "Extra data at end of file."):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2.insert(4, "element bad 1")
with self.assertRaisesRegex(ValueError, "Found an element with no properties."):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2[-1] = "3 2 3 3"
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2[-1] = "3 1 2 3 4"
msg = "A line of listy data did not have the specified length."
with self.assertRaisesRegex(ValueError, msg):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2[3] = "element vertex one"
msg = "Number of items for vertex was not a number."
with self.assertRaisesRegex(ValueError, msg):
_load_ply_raw(StringIO("\n".join(lines2)))
# Heterogeneous cases
lines2 = lines.copy()
lines2.insert(4, "property double y")
with self.assertRaisesRegex(ValueError, "Inconsistent data for vertex."):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2[-2] = "3.3 4.2"
_load_ply_raw(StringIO("\n".join(lines2)))
lines2[-2] = "3.3 4.3 2"
with self.assertRaisesRegex(ValueError, "Inconsistent data for vertex."):
_load_ply_raw(StringIO("\n".join(lines2)))
with self.assertRaisesRegex(ValueError, "Invalid vertices in file."):
load_ply(StringIO("\n".join(lines)))
lines2 = lines.copy()
lines2[5] = "element face 1"
with self.assertRaisesRegex(ValueError, "Invalid vertices in file."):
load_ply(StringIO("\n".join(lines2)))
lines2.insert(5, "property float z")
lines2.insert(5, "property float y")
lines2[-2] = "0 0 0"
lines2[-1] = ""
with self.assertRaisesRegex(ValueError, "Not enough data for face."):
load_ply(StringIO("\n".join(lines2)))
lines2[-1] = "2 0 0"
with self.assertRaisesRegex(ValueError, "Faces must have at least 3 vertices."):
load_ply(StringIO("\n".join(lines2)))
# Good one
lines2[-1] = "3 0 0 0"
load_ply(StringIO("\n".join(lines2)))
@staticmethod
def _bm_save_ply(verts: torch.Tensor, faces: torch.Tensor, decimal_places: int):
return lambda: save_ply(
BytesIO(),
verts=verts,
faces=faces,
ascii=True,
decimal_places=decimal_places,
)
@staticmethod
def _bm_load_ply(verts: torch.Tensor, faces: torch.Tensor, decimal_places: int):
f = BytesIO()
save_ply(f, verts=verts, faces=faces, ascii=True, decimal_places=decimal_places)
s = f.getvalue()
# Recreate stream so it's unaffected by how it was created.
return lambda: load_ply(BytesIO(s))
@staticmethod
def bm_save_simple_ply_with_init(V: int, F: int):
verts = torch.tensor(V * [[0.11, 0.22, 0.33]]).view(-1, 3)
faces = torch.tensor(F * [[0, 1, 2]]).view(-1, 3)
return TestMeshPlyIO._bm_save_ply(verts, faces, decimal_places=2)
@staticmethod
def bm_load_simple_ply_with_init(V: int, F: int):
verts = torch.tensor([[0.1, 0.2, 0.3]]).expand(V, 3)
faces = torch.tensor([[0, 1, 2]], dtype=torch.int64).expand(F, 3)
return TestMeshPlyIO._bm_load_ply(verts, faces, decimal_places=2)
@staticmethod
def bm_save_complex_ply(N: int):
meshes = torus(r=0.25, R=1.0, sides=N, rings=2 * N)
[verts], [faces] = meshes.verts_list(), meshes.faces_list()
return TestMeshPlyIO._bm_save_ply(verts, faces, decimal_places=5)
@staticmethod
def bm_load_complex_ply(N: int):
meshes = torus(r=0.25, R=1.0, sides=N, rings=2 * N)
[verts], [faces] = meshes.verts_list(), meshes.faces_list()
return TestMeshPlyIO._bm_load_ply(verts, faces, decimal_places=5)
|