Spaces:
Running
Running
File size: 59,207 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import pickle
import random
import unittest
from typing import List, Tuple, Union
import torch
import torch.nn.functional as F
from pytorch3d.io import save_obj
from pytorch3d.ops.iou_box3d import _box_planes, _box_triangles, box3d_overlap
from pytorch3d.transforms.rotation_conversions import random_rotation
from .common_testing import get_random_cuda_device, get_tests_dir, TestCaseMixin
OBJECTRON_TO_PYTORCH3D_FACE_IDX = [0, 4, 6, 2, 1, 5, 7, 3]
DATA_DIR = get_tests_dir() / "data"
DEBUG = False
DOT_EPS = 1e-3
AREA_EPS = 1e-4
UNIT_BOX = [
[0, 0, 0],
[1, 0, 0],
[1, 1, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 1],
[1, 1, 1],
[0, 1, 1],
]
class TestIoU3D(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(1)
@staticmethod
def create_box(xyz, whl):
x, y, z = xyz
w, h, le = whl
verts = torch.tensor(
[
[x - w / 2.0, y - h / 2.0, z - le / 2.0],
[x + w / 2.0, y - h / 2.0, z - le / 2.0],
[x + w / 2.0, y + h / 2.0, z - le / 2.0],
[x - w / 2.0, y + h / 2.0, z - le / 2.0],
[x - w / 2.0, y - h / 2.0, z + le / 2.0],
[x + w / 2.0, y - h / 2.0, z + le / 2.0],
[x + w / 2.0, y + h / 2.0, z + le / 2.0],
[x - w / 2.0, y + h / 2.0, z + le / 2.0],
],
device=xyz.device,
dtype=torch.float32,
)
return verts
@staticmethod
def _box3d_overlap_naive_batched(boxes1, boxes2):
"""
Wrapper around box3d_overlap_naive to support
batched input
"""
N = boxes1.shape[0]
M = boxes2.shape[0]
vols = torch.zeros((N, M), dtype=torch.float32, device=boxes1.device)
ious = torch.zeros((N, M), dtype=torch.float32, device=boxes1.device)
for n in range(N):
for m in range(M):
vol, iou = box3d_overlap_naive(boxes1[n], boxes2[m])
vols[n, m] = vol
ious[n, m] = iou
return vols, ious
@staticmethod
def _box3d_overlap_sampling_batched(boxes1, boxes2, num_samples: int):
"""
Wrapper around box3d_overlap_sampling to support
batched input
"""
N = boxes1.shape[0]
M = boxes2.shape[0]
ious = torch.zeros((N, M), dtype=torch.float32, device=boxes1.device)
for n in range(N):
for m in range(M):
iou = box3d_overlap_sampling(boxes1[n], boxes2[m])
ious[n, m] = iou
return ious
def _test_iou(self, overlap_fn, device):
box1 = torch.tensor(
UNIT_BOX,
dtype=torch.float32,
device=device,
)
# 1st test: same box, iou = 1.0
vol, iou = overlap_fn(box1[None], box1[None])
self.assertClose(vol, torch.tensor([[1.0]], device=vol.device, dtype=vol.dtype))
self.assertClose(iou, torch.tensor([[1.0]], device=vol.device, dtype=vol.dtype))
# 2nd test
dd = random.random()
box2 = box1 + torch.tensor([[0.0, dd, 0.0]], device=device)
vol, iou = overlap_fn(box1[None], box2[None])
self.assertClose(
vol, torch.tensor([[1 - dd]], device=vol.device, dtype=vol.dtype)
)
# symmetry
vol, iou = overlap_fn(box2[None], box1[None])
self.assertClose(
vol, torch.tensor([[1 - dd]], device=vol.device, dtype=vol.dtype)
)
# 3rd test
dd = random.random()
box2 = box1 + torch.tensor([[dd, 0.0, 0.0]], device=device)
vol, _ = overlap_fn(box1[None], box2[None])
self.assertClose(
vol, torch.tensor([[1 - dd]], device=vol.device, dtype=vol.dtype)
)
# symmetry
vol, _ = overlap_fn(box2[None], box1[None])
self.assertClose(
vol, torch.tensor([[1 - dd]], device=vol.device, dtype=vol.dtype)
)
# 4th test
ddx, ddy, ddz = random.random(), random.random(), random.random()
box2 = box1 + torch.tensor([[ddx, ddy, ddz]], device=device)
vol, _ = overlap_fn(box1[None], box2[None])
self.assertClose(
vol,
torch.tensor(
[[(1 - ddx) * (1 - ddy) * (1 - ddz)]],
device=vol.device,
dtype=vol.dtype,
),
)
# symmetry
vol, _ = overlap_fn(box2[None], box1[None])
self.assertClose(
vol,
torch.tensor(
[[(1 - ddx) * (1 - ddy) * (1 - ddz)]],
device=vol.device,
dtype=vol.dtype,
),
)
# Also check IoU is 1 when computing overlap with the same shifted box
vol, iou = overlap_fn(box2[None], box2[None])
self.assertClose(iou, torch.tensor([[1.0]], device=vol.device, dtype=vol.dtype))
# 5th test
ddx, ddy, ddz = random.random(), random.random(), random.random()
box2 = box1 + torch.tensor([[ddx, ddy, ddz]], device=device)
RR = random_rotation(dtype=torch.float32, device=device)
box1r = box1 @ RR.transpose(0, 1)
box2r = box2 @ RR.transpose(0, 1)
vol, _ = overlap_fn(box1r[None], box2r[None])
self.assertClose(
vol,
torch.tensor(
[[(1 - ddx) * (1 - ddy) * (1 - ddz)]],
device=vol.device,
dtype=vol.dtype,
),
)
# symmetry
vol, _ = overlap_fn(box2r[None], box1r[None])
self.assertClose(
vol,
torch.tensor(
[[(1 - ddx) * (1 - ddy) * (1 - ddz)]],
device=vol.device,
dtype=vol.dtype,
),
)
# 6th test
ddx, ddy, ddz = random.random(), random.random(), random.random()
box2 = box1 + torch.tensor([[ddx, ddy, ddz]], device=device)
RR = random_rotation(dtype=torch.float32, device=device)
TT = torch.rand((1, 3), dtype=torch.float32, device=device)
box1r = box1 @ RR.transpose(0, 1) + TT
box2r = box2 @ RR.transpose(0, 1) + TT
vol, _ = overlap_fn(box1r[None], box2r[None])
self.assertClose(
vol,
torch.tensor(
[[(1 - ddx) * (1 - ddy) * (1 - ddz)]],
device=vol.device,
dtype=vol.dtype,
),
atol=1e-7,
)
# symmetry
vol, _ = overlap_fn(box2r[None], box1r[None])
self.assertClose(
vol,
torch.tensor(
[[(1 - ddx) * (1 - ddy) * (1 - ddz)]],
device=vol.device,
dtype=vol.dtype,
),
atol=1e-7,
)
# 7th test: hand coded example and test with meshlab output
# Meshlab procedure to compute volumes of shapes
# 1. Load a shape, then Filters
# -> Remeshing, Simplification, Reconstruction -> Convex Hull
# 2. Select the convex hull shape (This is important!)
# 3. Then Filters -> Quality Measure and Computation -> Compute Geometric Measures
# 3. Check for "Mesh Volume" in the stdout
box1r = torch.tensor(
[
[3.1673, -2.2574, 0.4817],
[4.6470, 0.2223, 2.4197],
[5.2200, 1.1844, 0.7510],
[3.7403, -1.2953, -1.1869],
[-4.9316, 2.5724, 0.4856],
[-3.4519, 5.0521, 2.4235],
[-2.8789, 6.0142, 0.7549],
[-4.3586, 3.5345, -1.1831],
],
device=device,
)
box2r = torch.tensor(
[
[0.5623, 4.0647, 3.4334],
[3.3584, 4.3191, 1.1791],
[3.0724, -5.9235, -0.3315],
[0.2763, -6.1779, 1.9229],
[-2.0773, 4.6121, 0.2213],
[0.7188, 4.8665, -2.0331],
[0.4328, -5.3761, -3.5436],
[-2.3633, -5.6305, -1.2893],
],
device=device,
)
# from Meshlab:
vol_inters = 33.558529
vol_box1 = 65.899010
vol_box2 = 156.386719
iou_mesh = vol_inters / (vol_box1 + vol_box2 - vol_inters)
vol, iou = overlap_fn(box1r[None], box2r[None])
self.assertClose(vol, torch.tensor([[vol_inters]], device=device), atol=1e-1)
self.assertClose(iou, torch.tensor([[iou_mesh]], device=device), atol=1e-1)
# symmetry
vol, iou = overlap_fn(box2r[None], box1r[None])
self.assertClose(vol, torch.tensor([[vol_inters]], device=device), atol=1e-1)
self.assertClose(iou, torch.tensor([[iou_mesh]], device=device), atol=1e-1)
# 8th test: compare with sampling
# create box1
ctrs = torch.rand((2, 3), device=device)
whl = torch.rand((2, 3), device=device) * 10.0 + 1.0
# box8a & box8b
box8a = self.create_box(ctrs[0], whl[0])
box8b = self.create_box(ctrs[1], whl[1])
RR1 = random_rotation(dtype=torch.float32, device=device)
TT1 = torch.rand((1, 3), dtype=torch.float32, device=device)
RR2 = random_rotation(dtype=torch.float32, device=device)
TT2 = torch.rand((1, 3), dtype=torch.float32, device=device)
box1r = box8a @ RR1.transpose(0, 1) + TT1
box2r = box8b @ RR2.transpose(0, 1) + TT2
vol, iou = overlap_fn(box1r[None], box2r[None])
iou_sampling = self._box3d_overlap_sampling_batched(
box1r[None], box2r[None], num_samples=10000
)
self.assertClose(iou, iou_sampling, atol=1e-2)
# symmetry
vol, iou = overlap_fn(box2r[None], box1r[None])
self.assertClose(iou, iou_sampling, atol=1e-2)
# 9th test: non overlapping boxes, iou = 0.0
box2 = box1 + torch.tensor([[0.0, 100.0, 0.0]], device=device)
vol, iou = overlap_fn(box1[None], box2[None])
self.assertClose(vol, torch.tensor([[0.0]], device=vol.device, dtype=vol.dtype))
self.assertClose(iou, torch.tensor([[0.0]], device=vol.device, dtype=vol.dtype))
# symmetry
vol, iou = overlap_fn(box2[None], box1[None])
self.assertClose(vol, torch.tensor([[0.0]], device=vol.device, dtype=vol.dtype))
self.assertClose(iou, torch.tensor([[0.0]], device=vol.device, dtype=vol.dtype))
# 10th test: Non coplanar verts in a plane
box10 = box1 + torch.rand((8, 3), dtype=torch.float32, device=device)
msg = "Plane vertices are not coplanar"
with self.assertRaisesRegex(ValueError, msg):
overlap_fn(box10[None], box10[None])
# 11th test: Skewed bounding boxes but all verts are coplanar
box_skew_1 = torch.tensor(
[
[0, 0, 0],
[1, 0, 0],
[1, 1, 0],
[0, 1, 0],
[-2, -2, 2],
[2, -2, 2],
[2, 2, 2],
[-2, 2, 2],
],
dtype=torch.float32,
device=device,
)
box_skew_2 = torch.tensor(
[
[2.015995, 0.695233, 2.152806],
[2.832533, 0.663448, 1.576389],
[2.675445, -0.309592, 1.407520],
[1.858907, -0.277806, 1.983936],
[-0.413922, 3.161758, 2.044343],
[2.852230, 3.034615, -0.261321],
[2.223878, -0.857545, -0.936800],
[-1.042273, -0.730402, 1.368864],
],
dtype=torch.float32,
device=device,
)
vol1 = 14.000
vol2 = 14.000005
vol_inters = 5.431122
iou = vol_inters / (vol1 + vol2 - vol_inters)
vols, ious = overlap_fn(box_skew_1[None], box_skew_2[None])
self.assertClose(vols, torch.tensor([[vol_inters]], device=device), atol=1e-1)
self.assertClose(ious, torch.tensor([[iou]], device=device), atol=1e-1)
# symmetry
vols, ious = overlap_fn(box_skew_2[None], box_skew_1[None])
self.assertClose(vols, torch.tensor([[vol_inters]], device=device), atol=1e-1)
self.assertClose(ious, torch.tensor([[iou]], device=device), atol=1e-1)
# 12th test: Zero area bounding box (from GH issue #992)
box12a = torch.tensor(
[
[-1.0000, -1.0000, -0.5000],
[1.0000, -1.0000, -0.5000],
[1.0000, 1.0000, -0.5000],
[-1.0000, 1.0000, -0.5000],
[-1.0000, -1.0000, 0.5000],
[1.0000, -1.0000, 0.5000],
[1.0000, 1.0000, 0.5000],
[-1.0000, 1.0000, 0.5000],
],
device=device,
dtype=torch.float32,
)
box12b = torch.tensor(
[
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
],
device=device,
dtype=torch.float32,
)
msg = "Planes have zero areas"
with self.assertRaisesRegex(ValueError, msg):
overlap_fn(box12a[None], box12b[None])
# symmetry
with self.assertRaisesRegex(ValueError, msg):
overlap_fn(box12b[None], box12a[None])
# 13th test: From GH issue #992
# Zero area coplanar face after intersection
ctrs = torch.tensor([[0.0, 0.0, 0.0], [-1.0, 1.0, 0.0]])
whl = torch.tensor([[2.0, 2.0, 2.0], [2.0, 2, 2]])
box13a = TestIoU3D.create_box(ctrs[0], whl[0])
box13b = TestIoU3D.create_box(ctrs[1], whl[1])
vol, iou = overlap_fn(box13a[None], box13b[None])
self.assertClose(vol, torch.tensor([[2.0]], device=vol.device, dtype=vol.dtype))
# 14th test: From GH issue #992
# Random rotation, same boxes, iou should be 1.0
corners = (
torch.tensor(
[
[-1.0, -1.0, -1.0],
[1.0, -1.0, -1.0],
[1.0, 1.0, -1.0],
[-1.0, 1.0, -1.0],
[-1.0, -1.0, 1.0],
[1.0, -1.0, 1.0],
[1.0, 1.0, 1.0],
[-1.0, 1.0, 1.0],
],
device=device,
dtype=torch.float32,
)
* 0.5
)
yaw = torch.tensor(0.185)
Rot = torch.tensor(
[
[torch.cos(yaw), 0.0, torch.sin(yaw)],
[0.0, 1.0, 0.0],
[-torch.sin(yaw), 0.0, torch.cos(yaw)],
],
dtype=torch.float32,
device=device,
)
corners = (Rot.mm(corners.t())).t()
vol, iou = overlap_fn(corners[None], corners[None])
self.assertClose(
iou, torch.tensor([[1.0]], device=vol.device, dtype=vol.dtype), atol=1e-2
)
# 15th test: From GH issue #1082
box15a = torch.tensor(
[
[-2.5629019, 4.13995749, -1.76344576],
[1.92329434, 4.28127117, -1.86155124],
[1.86994571, 5.97489644, -1.86155124],
[-2.61625053, 5.83358276, -1.76344576],
[-2.53123587, 4.14095496, -0.31397536],
[1.95496037, 4.28226864, -0.41208084],
[1.90161174, 5.97589391, -0.41208084],
[-2.5845845, 5.83458023, -0.31397536],
],
device=device,
dtype=torch.float32,
)
box15b = torch.tensor(
[
[-2.6256125, 4.13036357, -1.82893437],
[1.87201008, 4.25296695, -1.82893437],
[1.82562476, 5.95458116, -1.82893437],
[-2.67199782, 5.83197777, -1.82893437],
[-2.6256125, 4.13036357, -0.40095884],
[1.87201008, 4.25296695, -0.40095884],
[1.82562476, 5.95458116, -0.40095884],
[-2.67199782, 5.83197777, -0.40095884],
],
device=device,
dtype=torch.float32,
)
vol, iou = overlap_fn(box15a[None], box15b[None])
self.assertClose(
iou, torch.tensor([[0.91]], device=vol.device, dtype=vol.dtype), atol=1e-2
)
# symmetry
vol, iou = overlap_fn(box15b[None], box15a[None])
self.assertClose(
iou, torch.tensor([[0.91]], device=vol.device, dtype=vol.dtype), atol=1e-2
)
# 16th test: From GH issue 1287
box16a = torch.tensor(
[
[-167.5847, -70.6167, -2.7927],
[-166.7333, -72.4264, -2.7927],
[-166.7333, -72.4264, -4.5927],
[-167.5847, -70.6167, -4.5927],
[-163.0605, -68.4880, -2.7927],
[-162.2090, -70.2977, -2.7927],
[-162.2090, -70.2977, -4.5927],
[-163.0605, -68.4880, -4.5927],
],
device=device,
dtype=torch.float32,
)
box16b = torch.tensor(
[
[-167.5847, -70.6167, -2.7927],
[-166.7333, -72.4264, -2.7927],
[-166.7333, -72.4264, -4.5927],
[-167.5847, -70.6167, -4.5927],
[-163.0605, -68.4880, -2.7927],
[-162.2090, -70.2977, -2.7927],
[-162.2090, -70.2977, -4.5927],
[-163.0605, -68.4880, -4.5927],
],
device=device,
dtype=torch.float32,
)
vol, iou = overlap_fn(box16a[None], box16b[None])
self.assertClose(
iou, torch.tensor([[1.0]], device=vol.device, dtype=vol.dtype), atol=1e-2
)
# symmetry
vol, iou = overlap_fn(box16b[None], box16a[None])
self.assertClose(
iou, torch.tensor([[1.0]], device=vol.device, dtype=vol.dtype), atol=1e-2
)
# 17th test: From GH issue 1287
box17a = torch.tensor(
[
[-33.94158, -4.51639, 0.96941],
[-34.67156, -2.65437, 0.96941],
[-34.67156, -2.65437, -0.95367],
[-33.94158, -4.51639, -0.95367],
[-38.75954, -6.40521, 0.96941],
[-39.48952, -4.54319, 0.96941],
[-39.48952, -4.54319, -0.95367],
[-38.75954, -6.40521, -0.95367],
],
device=device,
dtype=torch.float32,
)
box17b = torch.tensor(
[
[-33.94159, -4.51638, 0.96939],
[-34.67158, -2.65437, 0.96939],
[-34.67158, -2.65437, -0.95368],
[-33.94159, -4.51638, -0.95368],
[-38.75954, -6.40523, 0.96939],
[-39.48953, -4.54321, 0.96939],
[-39.48953, -4.54321, -0.95368],
[-38.75954, -6.40523, -0.95368],
],
device=device,
dtype=torch.float32,
)
vol, iou = overlap_fn(box17a[None], box17b[None])
self.assertClose(
iou, torch.tensor([[1.0]], device=vol.device, dtype=vol.dtype), atol=1e-2
)
# symmetry
vol, iou = overlap_fn(box17b[None], box17a[None])
self.assertClose(
iou, torch.tensor([[1.0]], device=vol.device, dtype=vol.dtype), atol=1e-2
)
# 18th test: From GH issue 1287
box18a = torch.tensor(
[
[-105.6248, -32.7026, -1.2279],
[-106.4690, -30.8895, -1.2279],
[-106.4690, -30.8895, -3.0279],
[-105.6248, -32.7026, -3.0279],
[-110.1575, -34.8132, -1.2279],
[-111.0017, -33.0001, -1.2279],
[-111.0017, -33.0001, -3.0279],
[-110.1575, -34.8132, -3.0279],
],
device=device,
dtype=torch.float32,
)
box18b = torch.tensor(
[
[-105.5094, -32.9504, -1.0641],
[-106.4272, -30.9793, -1.0641],
[-106.4272, -30.9793, -3.1916],
[-105.5094, -32.9504, -3.1916],
[-110.0421, -35.0609, -1.0641],
[-110.9599, -33.0899, -1.0641],
[-110.9599, -33.0899, -3.1916],
[-110.0421, -35.0609, -3.1916],
],
device=device,
dtype=torch.float32,
)
# from Meshlab
vol_inters = 17.108501
vol_box1 = 18.000067
vol_box2 = 23.128527
iou_mesh = vol_inters / (vol_box1 + vol_box2 - vol_inters)
vol, iou = overlap_fn(box18a[None], box18b[None])
self.assertClose(
iou,
torch.tensor([[iou_mesh]], device=vol.device, dtype=vol.dtype),
atol=1e-2,
)
self.assertClose(
vol,
torch.tensor([[vol_inters]], device=vol.device, dtype=vol.dtype),
atol=1e-2,
)
# symmetry
vol, iou = overlap_fn(box18b[None], box18a[None])
self.assertClose(
iou,
torch.tensor([[iou_mesh]], device=vol.device, dtype=vol.dtype),
atol=1e-2,
)
self.assertClose(
vol,
torch.tensor([[vol_inters]], device=vol.device, dtype=vol.dtype),
atol=1e-2,
)
# 19th example: From GH issue 1287
box19a = torch.tensor(
[
[-59.4785, -15.6003, 0.4398],
[-60.2263, -13.6928, 0.4398],
[-60.2263, -13.6928, -1.3909],
[-59.4785, -15.6003, -1.3909],
[-64.1743, -17.4412, 0.4398],
[-64.9221, -15.5337, 0.4398],
[-64.9221, -15.5337, -1.3909],
[-64.1743, -17.4412, -1.3909],
],
device=device,
dtype=torch.float32,
)
box19b = torch.tensor(
[
[-59.4874, -15.5775, -0.1512],
[-60.2174, -13.7155, -0.1512],
[-60.2174, -13.7155, -1.9820],
[-59.4874, -15.5775, -1.9820],
[-64.1832, -17.4185, -0.1512],
[-64.9132, -15.5564, -0.1512],
[-64.9132, -15.5564, -1.9820],
[-64.1832, -17.4185, -1.9820],
],
device=device,
dtype=torch.float32,
)
# from Meshlab
vol_inters = 12.505723
vol_box1 = 18.918238
vol_box2 = 18.468531
iou_mesh = vol_inters / (vol_box1 + vol_box2 - vol_inters)
vol, iou = overlap_fn(box19a[None], box19b[None])
self.assertClose(
iou,
torch.tensor([[iou_mesh]], device=vol.device, dtype=vol.dtype),
atol=1e-2,
)
self.assertClose(
vol,
torch.tensor([[vol_inters]], device=vol.device, dtype=vol.dtype),
atol=1e-2,
)
# symmetry
vol, iou = overlap_fn(box19b[None], box19a[None])
self.assertClose(
iou,
torch.tensor([[iou_mesh]], device=vol.device, dtype=vol.dtype),
atol=1e-2,
)
self.assertClose(
vol,
torch.tensor([[vol_inters]], device=vol.device, dtype=vol.dtype),
atol=1e-2,
)
def _test_real_boxes(self, overlap_fn, device):
data_filename = "./real_boxes.pkl"
with open(DATA_DIR / data_filename, "rb") as f:
example = pickle.load(f)
verts1 = torch.FloatTensor(example["verts1"])
verts2 = torch.FloatTensor(example["verts2"])
boxes = torch.stack((verts1, verts2)).to(device)
iou_expected = torch.eye(2).to(device)
vol, iou = overlap_fn(boxes, boxes)
self.assertClose(iou, iou_expected)
def test_iou_naive(self):
device = get_random_cuda_device()
self._test_iou(self._box3d_overlap_naive_batched, device)
self._test_compare_objectron(self._box3d_overlap_naive_batched, device)
self._test_real_boxes(self._box3d_overlap_naive_batched, device)
def test_iou_cpu(self):
device = torch.device("cpu")
self._test_iou(box3d_overlap, device)
self._test_compare_objectron(box3d_overlap, device)
self._test_real_boxes(box3d_overlap, device)
def test_iou_cuda(self):
device = torch.device("cuda:0")
self._test_iou(box3d_overlap, device)
self._test_compare_objectron(box3d_overlap, device)
self._test_real_boxes(box3d_overlap, device)
def _test_compare_objectron(self, overlap_fn, device):
# Load saved objectron data
data_filename = "./objectron_vols_ious.pt"
objectron_vals = torch.load(DATA_DIR / data_filename)
boxes1 = objectron_vals["boxes1"]
boxes2 = objectron_vals["boxes2"]
vols_objectron = objectron_vals["vols"]
ious_objectron = objectron_vals["ious"]
boxes1 = boxes1.to(device=device, dtype=torch.float32)
boxes2 = boxes2.to(device=device, dtype=torch.float32)
# Convert vertex orderings from Objectron to PyTorch3D convention
idx = torch.tensor(
OBJECTRON_TO_PYTORCH3D_FACE_IDX, dtype=torch.int64, device=device
)
boxes1 = boxes1.index_select(index=idx, dim=1)
boxes2 = boxes2.index_select(index=idx, dim=1)
# Run PyTorch3D version
vols, ious = overlap_fn(boxes1, boxes2)
# Check values match
self.assertClose(vols_objectron, vols.cpu())
self.assertClose(ious_objectron, ious.cpu())
def test_batched_errors(self):
N, M = 5, 10
boxes1 = torch.randn((N, 8, 3))
boxes2 = torch.randn((M, 10, 3))
with self.assertRaisesRegex(ValueError, "(8, 3)"):
box3d_overlap(boxes1, boxes2)
def test_box_volume(self):
device = torch.device("cuda:0")
box1 = torch.tensor(
[
[3.1673, -2.2574, 0.4817],
[4.6470, 0.2223, 2.4197],
[5.2200, 1.1844, 0.7510],
[3.7403, -1.2953, -1.1869],
[-4.9316, 2.5724, 0.4856],
[-3.4519, 5.0521, 2.4235],
[-2.8789, 6.0142, 0.7549],
[-4.3586, 3.5345, -1.1831],
],
dtype=torch.float32,
device=device,
)
box2 = torch.tensor(
[
[0.5623, 4.0647, 3.4334],
[3.3584, 4.3191, 1.1791],
[3.0724, -5.9235, -0.3315],
[0.2763, -6.1779, 1.9229],
[-2.0773, 4.6121, 0.2213],
[0.7188, 4.8665, -2.0331],
[0.4328, -5.3761, -3.5436],
[-2.3633, -5.6305, -1.2893],
],
dtype=torch.float32,
device=device,
)
box3 = torch.tensor(
[
[0, 0, 0],
[1, 0, 0],
[1, 1, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 1],
[1, 1, 1],
[0, 1, 1],
],
dtype=torch.float32,
device=device,
)
RR = random_rotation(dtype=torch.float32, device=device)
TT = torch.rand((1, 3), dtype=torch.float32, device=device)
box4 = box3 @ RR.transpose(0, 1) + TT
self.assertClose(box_volume(box1).cpu(), torch.tensor(65.899010), atol=1e-3)
self.assertClose(box_volume(box2).cpu(), torch.tensor(156.386719), atol=1e-3)
self.assertClose(box_volume(box3).cpu(), torch.tensor(1.0), atol=1e-3)
self.assertClose(box_volume(box4).cpu(), torch.tensor(1.0), atol=1e-3)
def test_box_planar_dir(self):
device = torch.device("cuda:0")
box1 = torch.tensor(
UNIT_BOX,
dtype=torch.float32,
device=device,
)
n1 = torch.tensor(
[
[0.0, 0.0, 1.0],
[0.0, -1.0, 0.0],
[0.0, 1.0, 0.0],
[1.0, 0.0, 0.0],
[-1.0, 0.0, 0.0],
[0.0, 0.0, -1.0],
],
device=device,
dtype=torch.float32,
)
RR = random_rotation(dtype=torch.float32, device=device)
TT = torch.rand((1, 3), dtype=torch.float32, device=device)
box2 = box1 @ RR.transpose(0, 1) + TT
n2 = n1 @ RR.transpose(0, 1)
self.assertClose(box_planar_dir(box1), n1)
self.assertClose(box_planar_dir(box2), n2)
@staticmethod
def iou_naive(N: int, M: int, device="cpu"):
box = torch.tensor(
[UNIT_BOX],
dtype=torch.float32,
device=device,
)
boxes1 = box + torch.randn((N, 1, 3), device=device)
boxes2 = box + torch.randn((M, 1, 3), device=device)
def output():
vol, iou = TestIoU3D._box3d_overlap_naive_batched(boxes1, boxes2)
return output
@staticmethod
def iou(N: int, M: int, device="cpu"):
box = torch.tensor(
[UNIT_BOX],
dtype=torch.float32,
device=device,
)
boxes1 = box + torch.randn((N, 1, 3), device=device)
boxes2 = box + torch.randn((M, 1, 3), device=device)
def output():
vol, iou = box3d_overlap(boxes1, boxes2)
return output
@staticmethod
def iou_sampling(N: int, M: int, num_samples: int, device="cpu"):
box = torch.tensor(
[UNIT_BOX],
dtype=torch.float32,
device=device,
)
boxes1 = box + torch.randn((N, 1, 3), device=device)
boxes2 = box + torch.randn((M, 1, 3), device=device)
def output():
_ = TestIoU3D._box3d_overlap_sampling_batched(boxes1, boxes2, num_samples)
return output
# -------------------------------------------------- #
# NAIVE IMPLEMENTATION #
# -------------------------------------------------- #
"""
The main functions below are:
* box3d_overlap_naive: which computes the exact IoU of box1 and box2
* box3d_overlap_sampling: which computes an approximate IoU of box1 and box2
by sampling points within the boxes
Note that both implementations currently do not support batching.
"""
# -------------------------------------------------- #
# Throughout this implementation, we assume that boxes
# are defined by their 8 corners in the following order
#
# (4) +---------+. (5)
# | ` . | ` .
# | (0) +---+-----+ (1)
# | | | |
# (7) +-----+---+. (6)|
# ` . | ` . |
# (3) ` +---------+ (2)
#
# -------------------------------------------------- #
# -------------------------------------------------- #
# HELPER FUNCTIONS FOR EXACT SOLUTION #
# -------------------------------------------------- #
def get_tri_verts(box: torch.Tensor) -> torch.Tensor:
"""
Return the vertex coordinates forming the triangles of the box.
The computation here resembles the Meshes data structure.
But since we only want this tiny functionality, we abstract it out.
Args:
box: tensor of shape (8, 3)
Returns:
tri_verts: tensor of shape (12, 3, 3)
"""
device = box.device
faces = torch.tensor(_box_triangles, device=device, dtype=torch.int64) # (12, 3)
tri_verts = box[faces] # (12, 3, 3)
return tri_verts
def get_plane_verts(box: torch.Tensor) -> torch.Tensor:
"""
Return the vertex coordinates forming the planes of the box.
The computation here resembles the Meshes data structure.
But since we only want this tiny functionality, we abstract it out.
Args:
box: tensor of shape (8, 3)
Returns:
plane_verts: tensor of shape (6, 4, 3)
"""
device = box.device
faces = torch.tensor(_box_planes, device=device, dtype=torch.int64) # (6, 4)
plane_verts = box[faces] # (6, 4, 3)
return plane_verts
def get_tri_center_normal(tris: torch.Tensor) -> torch.Tensor:
"""
Returns the center and normal of triangles
Args:
tris: tensor of shape (T, 3, 3)
Returns:
center: tensor of shape (T, 3)
normal: tensor of shape (T, 3)
"""
add_dim0 = False
if tris.ndim == 2:
tris = tris.unsqueeze(0)
add_dim0 = True
ctr = tris.mean(1) # (T, 3)
normals = torch.zeros_like(ctr)
v0, v1, v2 = tris.unbind(1) # 3 x (T, 3)
# unvectorized solution
T = tris.shape[0]
for t in range(T):
ns = torch.zeros((3, 3), device=tris.device)
ns[0] = torch.cross(v0[t] - ctr[t], v1[t] - ctr[t], dim=-1)
ns[1] = torch.cross(v0[t] - ctr[t], v2[t] - ctr[t], dim=-1)
ns[2] = torch.cross(v1[t] - ctr[t], v2[t] - ctr[t], dim=-1)
i = torch.norm(ns, dim=-1).argmax()
normals[t] = ns[i]
if add_dim0:
ctr = ctr[0]
normals = normals[0]
normals = F.normalize(normals, dim=-1)
return ctr, normals
def get_plane_center_normal(planes: torch.Tensor) -> torch.Tensor:
"""
Returns the center and normal of planes
Args:
planes: tensor of shape (P, 4, 3)
Returns:
center: tensor of shape (P, 3)
normal: tensor of shape (P, 3)
"""
add_dim0 = False
if planes.ndim == 2:
planes = planes.unsqueeze(0)
add_dim0 = True
ctr = planes.mean(1) # (P, 3)
normals = torch.zeros_like(ctr)
v0, v1, v2, v3 = planes.unbind(1) # 4 x (P, 3)
# unvectorized solution
P = planes.shape[0]
for t in range(P):
ns = torch.zeros((6, 3), device=planes.device)
ns[0] = torch.cross(v0[t] - ctr[t], v1[t] - ctr[t], dim=-1)
ns[1] = torch.cross(v0[t] - ctr[t], v2[t] - ctr[t], dim=-1)
ns[2] = torch.cross(v0[t] - ctr[t], v3[t] - ctr[t], dim=-1)
ns[3] = torch.cross(v1[t] - ctr[t], v2[t] - ctr[t], dim=-1)
ns[4] = torch.cross(v1[t] - ctr[t], v3[t] - ctr[t], dim=-1)
ns[5] = torch.cross(v2[t] - ctr[t], v3[t] - ctr[t], dim=-1)
i = torch.norm(ns, dim=-1).argmax()
normals[t] = ns[i]
if add_dim0:
ctr = ctr[0]
normals = normals[0]
normals = F.normalize(normals, dim=-1)
return ctr, normals
def box_planar_dir(
box: torch.Tensor, dot_eps: float = DOT_EPS, area_eps: float = AREA_EPS
) -> torch.Tensor:
"""
Finds the unit vector n which is perpendicular to each plane in the box
and points towards the inside of the box.
The planes are defined by `_box_planes`.
Since the shape is convex, we define the interior to be the direction
pointing to the center of the shape.
Args:
box: tensor of shape (8, 3) of the vertices of the 3D box
Returns:
n: tensor of shape (6,) of the unit vector orthogonal to the face pointing
towards the interior of the shape
"""
assert box.shape[0] == 8 and box.shape[1] == 3
# center point of each box
box_ctr = box.mean(0).view(1, 3)
# box planes
plane_verts = get_plane_verts(box) # (6, 4, 3)
v0, v1, v2, v3 = plane_verts.unbind(1)
plane_ctr, n = get_plane_center_normal(plane_verts)
# Check all verts are coplanar
if (
not (
F.normalize(v3 - v0, dim=-1).unsqueeze(1).bmm(n.unsqueeze(2)).abs()
< dot_eps
)
.all()
.item()
):
msg = "Plane vertices are not coplanar"
raise ValueError(msg)
# Check all faces have non zero area
area1 = torch.cross(v1 - v0, v2 - v0, dim=-1).norm(dim=-1) / 2
area2 = torch.cross(v3 - v0, v2 - v0, dim=-1).norm(dim=-1) / 2
if (area1 < area_eps).any().item() or (area2 < area_eps).any().item():
msg = "Planes have zero areas"
raise ValueError(msg)
# We can write: `box_ctr = plane_ctr + a * e0 + b * e1 + c * n`, (1).
# With <e0, n> = 0 and <e1, n> = 0, where <.,.> refers to the dot product,
# since that e0 is orthogonal to n. Same for e1.
"""
# Below is how one would solve for (a, b, c)
# Solving for (a, b)
numF = verts.shape[0]
A = torch.ones((numF, 2, 2), dtype=torch.float32, device=device)
B = torch.ones((numF, 2), dtype=torch.float32, device=device)
A[:, 0, 1] = (e0 * e1).sum(-1)
A[:, 1, 0] = (e0 * e1).sum(-1)
B[:, 0] = ((box_ctr - plane_ctr) * e0).sum(-1)
B[:, 1] = ((box_ctr - plane_ctr) * e1).sum(-1)
ab = torch.linalg.solve(A, B) # (numF, 2)
a, b = ab.unbind(1)
# solving for c
c = ((box_ctr - plane_ctr - a.view(numF, 1) * e0 - b.view(numF, 1) * e1) * n).sum(-1)
"""
# Since we know that <e0, n> = 0 and <e1, n> = 0 (e0 and e1 are orthogonal to n),
# the above solution is equivalent to
direc = F.normalize(box_ctr - plane_ctr, dim=-1) # (6, 3)
c = (direc * n).sum(-1)
# If c is negative, then we revert the direction of n such that n points "inside"
negc = c < 0.0
n[negc] *= -1.0
# c[negc] *= -1.0
# Now (a, b, c) is the solution to (1)
return n
def tri_verts_area(tri_verts: torch.Tensor) -> torch.Tensor:
"""
Computes the area of the triangle faces in tri_verts
Args:
tri_verts: tensor of shape (T, 3, 3)
Returns:
areas: the area of the triangles (T, 1)
"""
add_dim = False
if tri_verts.ndim == 2:
tri_verts = tri_verts.unsqueeze(0)
add_dim = True
v0, v1, v2 = tri_verts.unbind(1)
areas = torch.cross(v1 - v0, v2 - v0, dim=-1).norm(dim=-1) / 2.0
if add_dim:
areas = areas[0]
return areas
def box_volume(box: torch.Tensor) -> torch.Tensor:
"""
Computes the volume of each box in boxes.
The volume of each box is the sum of all the tetrahedrons
formed by the faces of the box. The face of the box is the base of
that tetrahedron and the center point of the box is the apex.
In other words, vol(box) = sum_i A_i * d_i / 3,
where A_i is the area of the i-th face and d_i is the
distance of the apex from the face.
We use the equivalent dot/cross product formulation.
Read https://en.wikipedia.org/wiki/Tetrahedron#Volume
Args:
box: tensor of shape (8, 3) containing the vertices
of the 3D box
Returns:
vols: the volume of the box
"""
assert box.shape[0] == 8 and box.shape[1] == 3
# Compute the center point of each box
ctr = box.mean(0).view(1, 1, 3)
# Extract the coordinates of the faces for each box
tri_verts = get_tri_verts(box)
# Set the origin of the coordinate system to coincide
# with the apex of the tetrahedron to simplify the volume calculation
# See https://en.wikipedia.org/wiki/Tetrahedron#Volume
tri_verts = tri_verts - ctr
# Compute the volume of each box using the dot/cross product formula
vols = torch.sum(
tri_verts[:, 0] * torch.cross(tri_verts[:, 1], tri_verts[:, 2], dim=-1),
dim=-1,
)
vols = (vols.abs() / 6.0).sum()
return vols
def coplanar_tri_faces(tri1: torch.Tensor, tri2: torch.Tensor, eps: float = DOT_EPS):
"""
Determines whether two triangle faces in 3D are coplanar
Args:
tri1: tensor of shape (3, 3) of the vertices of the 1st triangle
tri2: tensor of shape (3, 3) of the vertices of the 2nd triangle
Returns:
is_coplanar: bool
"""
tri1_ctr, tri1_n = get_tri_center_normal(tri1)
tri2_ctr, tri2_n = get_tri_center_normal(tri2)
check1 = tri1_n.dot(tri2_n).abs() > 1 - eps # checks if parallel
dist12 = torch.norm(tri1.unsqueeze(1) - tri2.unsqueeze(0), dim=-1)
dist12_argmax = dist12.argmax()
i1 = dist12_argmax // 3
i2 = dist12_argmax % 3
assert dist12[i1, i2] == dist12.max()
check2 = (
F.normalize(tri1[i1] - tri2[i2], dim=0).dot(tri1_n).abs() < eps
) or F.normalize(tri1[i1] - tri2[i2], dim=0).dot(tri2_n).abs() < eps
return check1 and check2
def coplanar_tri_plane(
tri: torch.Tensor, plane: torch.Tensor, n: torch.Tensor, eps: float = DOT_EPS
):
"""
Determines whether two triangle faces in 3D are coplanar
Args:
tri: tensor of shape (3, 3) of the vertices of the triangle
plane: tensor of shape (4, 3) of the vertices of the plane
n: tensor of shape (3,) of the unit "inside" direction on the plane
Returns:
is_coplanar: bool
"""
tri_ctr, tri_n = get_tri_center_normal(tri)
check1 = tri_n.dot(n).abs() > 1 - eps # checks if parallel
dist12 = torch.norm(tri.unsqueeze(1) - plane.unsqueeze(0), dim=-1)
dist12_argmax = dist12.argmax()
i1 = dist12_argmax // 4
i2 = dist12_argmax % 4
assert dist12[i1, i2] == dist12.max()
check2 = F.normalize(tri[i1] - plane[i2], dim=0).dot(n).abs() < eps
return check1 and check2
def is_inside(
plane: torch.Tensor,
n: torch.Tensor,
points: torch.Tensor,
return_proj: bool = True,
):
"""
Computes whether point is "inside" the plane.
The definition of "inside" means that the point
has a positive component in the direction of the plane normal defined by n.
For example,
plane
|
| . (A)
|--> n
|
.(B) |
Point (A) is "inside" the plane, while point (B) is "outside" the plane.
Args:
plane: tensor of shape (4,3) of vertices of a box plane
n: tensor of shape (3,) of the unit "inside" direction on the plane
points: tensor of shape (P, 3) of coordinates of a point
return_proj: bool whether to return the projected point on the plane
Returns:
is_inside: bool of shape (P,) of whether point is inside
p_proj: tensor of shape (P, 3) of the projected point on plane
"""
device = plane.device
v0, v1, v2, v3 = plane.unbind(0)
plane_ctr = plane.mean(0)
e0 = F.normalize(v0 - plane_ctr, dim=0)
e1 = F.normalize(v1 - plane_ctr, dim=0)
if not torch.allclose(e0.dot(n), torch.zeros((1,), device=device), atol=1e-2):
raise ValueError("Input n is not perpendicular to the plane")
if not torch.allclose(e1.dot(n), torch.zeros((1,), device=device), atol=1e-2):
raise ValueError("Input n is not perpendicular to the plane")
add_dim = False
if points.ndim == 1:
points = points.unsqueeze(0)
add_dim = True
assert points.shape[1] == 3
# Every point p can be written as p = ctr + a e0 + b e1 + c n
# If return_proj is True, we need to solve for (a, b)
p_proj = None
if return_proj:
# solving for (a, b)
A = torch.tensor(
[[1.0, e0.dot(e1)], [e0.dot(e1), 1.0]], dtype=torch.float32, device=device
)
B = torch.zeros((2, points.shape[0]), dtype=torch.float32, device=device)
B[0, :] = torch.sum((points - plane_ctr.view(1, 3)) * e0.view(1, 3), dim=-1)
B[1, :] = torch.sum((points - plane_ctr.view(1, 3)) * e1.view(1, 3), dim=-1)
ab = A.inverse() @ B # (2, P)
p_proj = plane_ctr.view(1, 3) + ab.transpose(0, 1) @ torch.stack(
(e0, e1), dim=0
)
# solving for c
# c = (point - ctr - a * e0 - b * e1).dot(n)
direc = torch.sum((points - plane_ctr.view(1, 3)) * n.view(1, 3), dim=-1)
ins = direc >= 0.0
if add_dim:
assert p_proj.shape[0] == 1
p_proj = p_proj[0]
return ins, p_proj
def plane_edge_point_of_intersection(plane, n, p0, p1, eps: float = DOT_EPS):
"""
Finds the point of intersection between a box plane and
a line segment connecting (p0, p1).
The plane is assumed to be infinite long.
Args:
plane: tensor of shape (4, 3) of the coordinates of the vertices defining the plane
n: tensor of shape (3,) of the unit direction perpendicular on the plane
(Note that we could compute n but since it's computed in the main
body of the function, we save time by feeding it in. For the purpose
of this function, it's not important that n points "inside" the shape.)
p0, p1: tensors of shape (3,), (3,)
Returns:
p: tensor of shape (3,) of the coordinates of the point of intersection
a: scalar such that p = p0 + a*(p1-p0)
"""
# The point of intersection can be parametrized
# p = p0 + a (p1 - p0) where a in [0, 1]
# We want to find a such that p is on plane
# <p - ctr, n> = 0
# if segment (p0, p1) is parallel to plane (it can only be on it)
direc = F.normalize(p1 - p0, dim=0)
if direc.dot(n).abs() < eps:
return (p1 + p0) / 2.0, 0.5
else:
ctr = plane.mean(0)
a = -(p0 - ctr).dot(n) / ((p1 - p0).dot(n))
p = p0 + a * (p1 - p0)
return p, a
"""
The three following functions support clipping a triangle face by a plane.
They contain the following cases: (a) the triangle has one point "outside" the plane and
(b) the triangle has two points "outside" the plane.
This logic follows the logic of clipping triangles when they intersect the image plane while
rendering.
"""
def clip_tri_by_plane_oneout(
plane: torch.Tensor,
n: torch.Tensor,
vout: torch.Tensor,
vin1: torch.Tensor,
vin2: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Case (a).
Clips triangle by plane when vout is outside plane, and vin1, vin2, is inside
In this case, only one vertex of the triangle is outside the plane.
Clip the triangle into a quadrilateral, and then split into two triangles
Args:
plane: tensor of shape (4, 3) of the coordinates of the vertices forming the plane
n: tensor of shape (3,) of the unit "inside" direction of the plane
vout, vin1, vin2: tensors of shape (3,) of the points forming the triangle, where
vout is "outside" the plane and vin1, vin2 are "inside"
Returns:
verts: tensor of shape (4, 3) containing the new vertices formed after clipping the
original intersecting triangle (vout, vin1, vin2)
faces: tensor of shape (2, 3) defining the vertex indices forming the two new triangles
which are "inside" the plane formed after clipping
"""
device = plane.device
# point of intersection between plane and (vin1, vout)
pint1, a1 = plane_edge_point_of_intersection(plane, n, vin1, vout)
assert a1 >= -0.0001 and a1 <= 1.0001, a1
# point of intersection between plane and (vin2, vout)
pint2, a2 = plane_edge_point_of_intersection(plane, n, vin2, vout)
assert a2 >= -0.0001 and a2 <= 1.0001, a2
verts = torch.stack((vin1, pint1, pint2, vin2), dim=0) # 4x3
faces = torch.tensor(
[[0, 1, 2], [0, 2, 3]], dtype=torch.int64, device=device
) # 2x3
return verts, faces
def clip_tri_by_plane_twoout(
plane: torch.Tensor,
n: torch.Tensor,
vout1: torch.Tensor,
vout2: torch.Tensor,
vin: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Case (b).
Clips face by plane when vout1, vout2 are outside plane, and vin1 is inside
In this case, only one vertex of the triangle is inside the plane.
Args:
plane: tensor of shape (4, 3) of the coordinates of the vertices forming the plane
n: tensor of shape (3,) of the unit "inside" direction of the plane
vout1, vout2, vin: tensors of shape (3,) of the points forming the triangle, where
vin is "inside" the plane and vout1, vout2 are "outside"
Returns:
verts: tensor of shape (3, 3) containing the new vertices formed after clipping the
original intersectiong triangle (vout, vin1, vin2)
faces: tensor of shape (1, 3) defining the vertex indices forming
the single new triangle which is "inside" the plane formed after clipping
"""
device = plane.device
# point of intersection between plane and (vin, vout1)
pint1, a1 = plane_edge_point_of_intersection(plane, n, vin, vout1)
assert a1 >= -0.0001 and a1 <= 1.0001, a1
# point of intersection between plane and (vin, vout2)
pint2, a2 = plane_edge_point_of_intersection(plane, n, vin, vout2)
assert a2 >= -0.0001 and a2 <= 1.0001, a2
verts = torch.stack((vin, pint1, pint2), dim=0) # 3x3
faces = torch.tensor(
[
[0, 1, 2],
],
dtype=torch.int64,
device=device,
) # 1x3
return verts, faces
def clip_tri_by_plane(plane, n, tri_verts) -> Union[List, torch.Tensor]:
"""
Clip a trianglular face defined by tri_verts with a plane of inside "direction" n.
This function computes whether the triangle has one or two
or none points "outside" the plane.
Args:
plane: tensor of shape (4, 3) of the vertex coordinates of the plane
n: tensor of shape (3,) of the unit "inside" direction of the plane
tri_verts: tensor of shape (3, 3) of the vertex coordiantes of the the triangle faces
Returns:
tri_verts: tensor of shape (K, 3, 3) of the vertex coordinates of the triangles formed
after clipping. All K triangles are now "inside" the plane.
"""
if coplanar_tri_plane(tri_verts, plane, n):
return tri_verts.view(1, 3, 3)
v0, v1, v2 = tri_verts.unbind(0)
isin0, _ = is_inside(plane, n, v0)
isin1, _ = is_inside(plane, n, v1)
isin2, _ = is_inside(plane, n, v2)
if isin0 and isin1 and isin2:
# all in, no clipping, keep the old triangle face
return tri_verts.view(1, 3, 3)
elif (not isin0) and (not isin1) and (not isin2):
# all out, delete triangle
return []
else:
if isin0:
if isin1: # (isin0, isin1, not isin2)
verts, faces = clip_tri_by_plane_oneout(plane, n, v2, v0, v1)
return verts[faces]
elif isin2: # (isin0, not isin1, isin2)
verts, faces = clip_tri_by_plane_oneout(plane, n, v1, v0, v2)
return verts[faces]
else: # (isin0, not isin1, not isin2)
verts, faces = clip_tri_by_plane_twoout(plane, n, v1, v2, v0)
return verts[faces]
else:
if isin1 and isin2: # (not isin0, isin1, isin2)
verts, faces = clip_tri_by_plane_oneout(plane, n, v0, v1, v2)
return verts[faces]
elif isin1: # (not isin0, isin1, not isin2)
verts, faces = clip_tri_by_plane_twoout(plane, n, v0, v2, v1)
return verts[faces]
elif isin2: # (not isin0, not isin1, isin2)
verts, faces = clip_tri_by_plane_twoout(plane, n, v0, v1, v2)
return verts[faces]
# Should not be reached
return []
# -------------------------------------------------- #
# MAIN: BOX3D_OVERLAP #
# -------------------------------------------------- #
def box3d_overlap_naive(box1: torch.Tensor, box2: torch.Tensor):
"""
Computes the intersection of 3D boxes1 and boxes2.
Inputs boxes1, boxes2 are tensors of shape (8, 3) containing
the 8 corners of the boxes, as follows
(4) +---------+. (5)
| ` . | ` .
| (0) +---+-----+ (1)
| | | |
(7) +-----+---+. (6)|
` . | ` . |
(3) ` +---------+ (2)
Args:
box1: tensor of shape (8, 3) of the coordinates of the 1st box
box2: tensor of shape (8, 3) of the coordinates of the 2nd box
Returns:
vol: the volume of the intersecting convex shape
iou: the intersection over union which is simply
`iou = vol / (vol1 + vol2 - vol)`
"""
device = box1.device
# For boxes1 we compute the unit directions n1 corresponding to quad_faces
n1 = box_planar_dir(box1) # (6, 3)
# For boxes2 we compute the unit directions n2 corresponding to quad_faces
n2 = box_planar_dir(box2)
# We define triangle faces
vol1 = box_volume(box1)
vol2 = box_volume(box2)
tri_verts1 = get_tri_verts(box1) # (12, 3, 3)
plane_verts1 = get_plane_verts(box1) # (6, 4, 3)
tri_verts2 = get_tri_verts(box2) # (12, 3, 3)
plane_verts2 = get_plane_verts(box2) # (6, 4, 3)
num_planes = plane_verts1.shape[0] # (=6) based on our definition of planes
# Every triangle in box1 will be compared to each plane in box2.
# If the triangle is fully outside or fully inside, then it will remain as is
# If the triangle intersects with the (infinite) plane, it will be broken into
# subtriangles such that each subtriangle is either fully inside or outside the plane.
# Tris in Box1 -> Planes in Box2
for pidx in range(num_planes):
plane = plane_verts2[pidx]
nplane = n2[pidx]
tri_verts_updated = torch.zeros((0, 3, 3), dtype=torch.float32, device=device)
for i in range(tri_verts1.shape[0]):
tri = clip_tri_by_plane(plane, nplane, tri_verts1[i])
if len(tri) > 0:
tri_verts_updated = torch.cat((tri_verts_updated, tri), dim=0)
tri_verts1 = tri_verts_updated
# Tris in Box2 -> Planes in Box1
for pidx in range(num_planes):
plane = plane_verts1[pidx]
nplane = n1[pidx]
tri_verts_updated = torch.zeros((0, 3, 3), dtype=torch.float32, device=device)
for i in range(tri_verts2.shape[0]):
tri = clip_tri_by_plane(plane, nplane, tri_verts2[i])
if len(tri) > 0:
tri_verts_updated = torch.cat((tri_verts_updated, tri), dim=0)
tri_verts2 = tri_verts_updated
# remove triangles that are coplanar from the intersection as
# otherwise they would be doublecounting towards the volume
# this happens only if the original 3D boxes have common planes
# Since the resulting shape is convex and specifically composed of planar segments,
# each planar segment can belong either on box1 or box2 but not both.
# Without loss of generality, we assign shared planar segments to box1
keep2 = torch.ones((tri_verts2.shape[0],), device=device, dtype=torch.bool)
for i1 in range(tri_verts1.shape[0]):
for i2 in range(tri_verts2.shape[0]):
if (
coplanar_tri_faces(tri_verts1[i1], tri_verts2[i2])
and tri_verts_area(tri_verts1[i1]) > AREA_EPS
):
keep2[i2] = 0
keep2 = keep2.nonzero()[:, 0]
tri_verts2 = tri_verts2[keep2]
# intersecting shape
num_faces = tri_verts1.shape[0] + tri_verts2.shape[0]
num_verts = num_faces * 3 # V=F*3
overlap_faces = torch.arange(num_verts).view(num_faces, 3) # Fx3
overlap_tri_verts = torch.cat((tri_verts1, tri_verts2), dim=0) # Fx3x3
overlap_verts = overlap_tri_verts.view(num_verts, 3) # Vx3
# the volume of the convex hull defined by (overlap_verts, overlap_faces)
# can be defined as the sum of all the tetrahedrons formed where for each tetrahedron
# the base is the triangle and the apex is the center point of the convex hull
# See the math here: https://en.wikipedia.org/wiki/Tetrahedron#Volume
# we compute the center by computing the center point of each face
# and then averaging the face centers
ctr = overlap_tri_verts.mean(1).mean(0)
tetras = overlap_tri_verts - ctr.view(1, 1, 3)
vol = torch.sum(
tetras[:, 0] * torch.cross(tetras[:, 1], tetras[:, 2], dim=-1), dim=-1
)
vol = (vol.abs() / 6.0).sum()
iou = vol / (vol1 + vol2 - vol)
if DEBUG:
# save shapes
tri_faces = torch.tensor(_box_triangles, device=device, dtype=torch.int64)
save_obj("/tmp/output/shape1.obj", box1, tri_faces)
save_obj("/tmp/output/shape2.obj", box2, tri_faces)
if len(overlap_verts) > 0:
save_obj("/tmp/output/inters_shape.obj", overlap_verts, overlap_faces)
return vol, iou
# -------------------------------------------------- #
# HELPER FUNCTIONS FOR SAMPLING SOLUTION #
# -------------------------------------------------- #
def is_point_inside_box(box: torch.Tensor, points: torch.Tensor):
"""
Determines whether points are inside the boxes
Args:
box: tensor of shape (8, 3) of the corners of the boxes
points: tensor of shape (P, 3) of the points
Returns:
inside: bool tensor of shape (P,)
"""
device = box.device
P = points.shape[0]
n = box_planar_dir(box) # (6, 3)
box_planes = get_plane_verts(box) # (6, 4)
num_planes = box_planes.shape[0] # = 6
# a point p is inside the box if it "inside" all planes of the box
# so we run the checks
ins = torch.zeros((P, num_planes), device=device, dtype=torch.bool)
for i in range(num_planes):
is_in, _ = is_inside(box_planes[i], n[i], points, return_proj=False)
ins[:, i] = is_in
ins = ins.all(dim=1)
return ins
def sample_points_within_box(box: torch.Tensor, num_samples: int = 10):
"""
Sample points within a box defined by its 8 coordinates
Args:
box: tensor of shape (8, 3) of the box coordinates
num_samples: int defining the number of samples
Returns:
points: (num_samples, 3) of points inside the box
"""
assert box.shape[0] == 8 and box.shape[1] == 3
xyzmin = box.min(0).values.view(1, 3)
xyzmax = box.max(0).values.view(1, 3)
uvw = torch.rand((num_samples, 3), device=box.device)
points = uvw * (xyzmax - xyzmin) + xyzmin
# because the box is not axis aligned we need to check wether
# the points are within the box
num_points = 0
samples = []
while num_points < num_samples:
inside = is_point_inside_box(box, points)
samples.append(points[inside].view(-1, 3))
num_points += inside.sum()
samples = torch.cat(samples, dim=0)
return samples[1:num_samples]
# -------------------------------------------------- #
# MAIN: BOX3D_OVERLAP_SAMPLING #
# -------------------------------------------------- #
def box3d_overlap_sampling(
box1: torch.Tensor, box2: torch.Tensor, num_samples: int = 10000
):
"""
Computes the intersection of two boxes by sampling points
"""
vol1 = box_volume(box1)
vol2 = box_volume(box2)
points1 = sample_points_within_box(box1, num_samples=num_samples)
points2 = sample_points_within_box(box2, num_samples=num_samples)
isin21 = is_point_inside_box(box1, points2)
num21 = isin21.sum()
isin12 = is_point_inside_box(box2, points1)
num12 = isin12.sum()
assert num12 <= num_samples
assert num21 <= num_samples
inters = (vol1 * num12 + vol2 * num21) / 2.0
union = vol1 * num_samples + vol2 * num_samples - inters
return inters / union
|