File size: 10,117 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import unittest
from itertools import product

import torch
from pytorch3d.ops.knn import _KNN, knn_gather, knn_points

from .common_testing import get_random_cuda_device, TestCaseMixin


class TestKNN(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    @staticmethod
    def _knn_points_naive(
        p1, p2, lengths1, lengths2, K: int, norm: int = 2
    ) -> torch.Tensor:
        """
        Naive PyTorch implementation of K-Nearest Neighbors.
        Returns always sorted results
        """
        N, P1, D = p1.shape
        _N, P2, _D = p2.shape

        assert N == _N and D == _D

        if lengths1 is None:
            lengths1 = torch.full((N,), P1, dtype=torch.int64, device=p1.device)
        if lengths2 is None:
            lengths2 = torch.full((N,), P2, dtype=torch.int64, device=p1.device)

        dists = torch.zeros((N, P1, K), dtype=torch.float32, device=p1.device)
        idx = torch.zeros((N, P1, K), dtype=torch.int64, device=p1.device)

        for n in range(N):
            num1 = lengths1[n].item()
            num2 = lengths2[n].item()
            pp1 = p1[n, :num1].view(num1, 1, D)
            pp2 = p2[n, :num2].view(1, num2, D)
            diff = pp1 - pp2
            if norm == 2:
                diff = (diff * diff).sum(2)
            elif norm == 1:
                diff = diff.abs().sum(2)
            else:
                raise ValueError("No support for norm %d" % (norm))
            num2 = min(num2, K)
            for i in range(num1):
                dd = diff[i]
                srt_dd, srt_idx = dd.sort()

                dists[n, i, :num2] = srt_dd[:num2]
                idx[n, i, :num2] = srt_idx[:num2]

        return _KNN(dists=dists, idx=idx, knn=None)

    def _knn_vs_python_square_helper(self, device, return_sorted):
        Ns = [1, 4]
        Ds = [3, 5, 8]
        P1s = [8, 24]
        P2s = [8, 16, 32]
        Ks = [1, 3, 10]
        norms = [1, 2]
        versions = [0, 1, 2, 3]
        factors = [Ns, Ds, P1s, P2s, Ks, norms]
        for N, D, P1, P2, K, norm in product(*factors):
            for version in versions:
                if version == 3 and K > 4:
                    continue
                x = torch.randn(N, P1, D, device=device, requires_grad=True)
                x_cuda = x.clone().detach()
                x_cuda.requires_grad_(True)
                y = torch.randn(N, P2, D, device=device, requires_grad=True)
                y_cuda = y.clone().detach()
                y_cuda.requires_grad_(True)

                # forward
                out1 = self._knn_points_naive(
                    x, y, lengths1=None, lengths2=None, K=K, norm=norm
                )
                out2 = knn_points(
                    x_cuda,
                    y_cuda,
                    K=K,
                    norm=norm,
                    version=version,
                    return_sorted=return_sorted,
                )
                if K > 1 and not return_sorted:
                    # check out2 is not sorted
                    self.assertFalse(torch.allclose(out1[0], out2[0]))
                    self.assertFalse(torch.allclose(out1[1], out2[1]))
                    # now sort out2
                    dists, idx, _ = out2
                    if P2 < K:
                        dists[..., P2:] = float("inf")
                        dists, sort_idx = dists.sort(dim=2)
                        dists[..., P2:] = 0
                    else:
                        dists, sort_idx = dists.sort(dim=2)
                    idx = idx.gather(2, sort_idx)
                    out2 = _KNN(dists, idx, None)

                self.assertClose(out1[0], out2[0])
                self.assertTrue(torch.all(out1[1] == out2[1]))

                # backward
                grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device)
                loss1 = (out1.dists * grad_dist).sum()
                loss1.backward()
                loss2 = (out2.dists * grad_dist).sum()
                loss2.backward()

                self.assertClose(x_cuda.grad, x.grad, atol=5e-6)
                self.assertClose(y_cuda.grad, y.grad, atol=5e-6)

    def test_knn_vs_python_square_cpu(self):
        device = torch.device("cpu")
        self._knn_vs_python_square_helper(device, return_sorted=True)

    def test_knn_vs_python_square_cuda(self):
        device = get_random_cuda_device()
        # Check both cases where the output is sorted and unsorted
        self._knn_vs_python_square_helper(device, return_sorted=True)
        self._knn_vs_python_square_helper(device, return_sorted=False)

    def _knn_vs_python_ragged_helper(self, device):
        Ns = [1, 4]
        Ds = [3, 5, 8]
        P1s = [8, 24]
        P2s = [8, 16, 32]
        Ks = [1, 3, 10]
        norms = [1, 2]
        factors = [Ns, Ds, P1s, P2s, Ks, norms]
        for N, D, P1, P2, K, norm in product(*factors):
            x = torch.rand((N, P1, D), device=device, requires_grad=True)
            y = torch.rand((N, P2, D), device=device, requires_grad=True)
            lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
            lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)

            x_csrc = x.clone().detach()
            x_csrc.requires_grad_(True)
            y_csrc = y.clone().detach()
            y_csrc.requires_grad_(True)

            # forward
            out1 = self._knn_points_naive(
                x, y, lengths1=lengths1, lengths2=lengths2, K=K, norm=norm
            )
            out2 = knn_points(
                x_csrc, y_csrc, lengths1=lengths1, lengths2=lengths2, K=K, norm=norm
            )
            self.assertClose(out1[0], out2[0])
            self.assertTrue(torch.all(out1[1] == out2[1]))

            # backward
            grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device)
            loss1 = (out1.dists * grad_dist).sum()
            loss1.backward()
            loss2 = (out2.dists * grad_dist).sum()
            loss2.backward()

            self.assertClose(x_csrc.grad, x.grad, atol=5e-6)
            self.assertClose(y_csrc.grad, y.grad, atol=5e-6)

    def test_knn_vs_python_ragged_cpu(self):
        device = torch.device("cpu")
        self._knn_vs_python_ragged_helper(device)

    def test_knn_vs_python_ragged_cuda(self):
        device = get_random_cuda_device()
        self._knn_vs_python_ragged_helper(device)

    def test_knn_gather(self):
        device = get_random_cuda_device()
        N, P1, P2, K, D = 4, 16, 12, 8, 3
        x = torch.rand((N, P1, D), device=device)
        y = torch.rand((N, P2, D), device=device)
        lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
        lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)

        out = knn_points(x, y, lengths1=lengths1, lengths2=lengths2, K=K)
        y_nn = knn_gather(y, out.idx, lengths2)

        for n in range(N):
            for p1 in range(P1):
                for k in range(K):
                    if k < lengths2[n]:
                        self.assertClose(y_nn[n, p1, k], y[n, out.idx[n, p1, k]])
                    else:
                        self.assertTrue(torch.all(y_nn[n, p1, k] == 0.0))

    def test_knn_check_version(self):
        try:
            from pytorch3d._C import knn_check_version
        except ImportError:
            # knn_check_version will only be defined if we compiled with CUDA support
            return
        for D in range(-10, 10):
            for K in range(-10, 20):
                v0 = True
                v1 = 1 <= D <= 32
                v2 = 1 <= D <= 8 and 1 <= K <= 32
                v3 = 1 <= D <= 8 and 1 <= K <= 4
                all_expected = [v0, v1, v2, v3]
                for version in range(-10, 10):
                    actual = knn_check_version(version, D, K)
                    expected = False
                    if 0 <= version < len(all_expected):
                        expected = all_expected[version]
                    self.assertEqual(actual, expected)

    def test_invalid_norm(self):
        device = get_random_cuda_device()
        N, P1, P2, K, D = 4, 16, 12, 8, 3
        x = torch.rand((N, P1, D), device=device)
        y = torch.rand((N, P2, D), device=device)
        with self.assertRaisesRegex(ValueError, "Support for 1 or 2 norm."):
            knn_points(x, y, K=K, norm=3)

        with self.assertRaisesRegex(ValueError, "Support for 1 or 2 norm."):
            knn_points(x, y, K=K, norm=0)

    @staticmethod
    def knn_square(N: int, P1: int, P2: int, D: int, K: int, device: str):
        device = torch.device(device)
        pts1 = torch.randn(N, P1, D, device=device, requires_grad=True)
        pts2 = torch.randn(N, P2, D, device=device, requires_grad=True)
        grad_dists = torch.randn(N, P1, K, device=device)
        torch.cuda.synchronize()

        def output():
            out = knn_points(pts1, pts2, K=K)
            loss = (out.dists * grad_dists).sum()
            loss.backward()
            torch.cuda.synchronize()

        return output

    @staticmethod
    def knn_ragged(N: int, P1: int, P2: int, D: int, K: int, device: str):
        device = torch.device(device)
        pts1 = torch.rand((N, P1, D), device=device, requires_grad=True)
        pts2 = torch.rand((N, P2, D), device=device, requires_grad=True)
        lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
        lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)
        grad_dists = torch.randn(N, P1, K, device=device)
        torch.cuda.synchronize()

        def output():
            out = knn_points(pts1, pts2, lengths1=lengths1, lengths2=lengths2, K=K)
            loss = (out.dists * grad_dists).sum()
            loss.backward()
            torch.cuda.synchronize()

        return output