Spaces:
Running
Running
File size: 4,069 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from pytorch3d.renderer.materials import Materials
from .common_testing import TestCaseMixin
class TestMaterials(TestCaseMixin, unittest.TestCase):
def test_init(self):
"""
Initialize Materials class with the default values.
"""
device = torch.device("cuda:0")
mat = Materials(device=device)
self.assertTrue(torch.is_tensor(mat.ambient_color))
self.assertTrue(torch.is_tensor(mat.diffuse_color))
self.assertTrue(torch.is_tensor(mat.specular_color))
self.assertTrue(torch.is_tensor(mat.shininess))
self.assertTrue(mat.ambient_color.device == device)
self.assertTrue(mat.diffuse_color.device == device)
self.assertTrue(mat.specular_color.device == device)
self.assertTrue(mat.shininess.device == device)
self.assertTrue(mat.ambient_color.shape == (1, 3))
self.assertTrue(mat.diffuse_color.shape == (1, 3))
self.assertTrue(mat.specular_color.shape == (1, 3))
self.assertTrue(mat.shininess.shape == (1,))
def test_materials_clone_to(self):
device = torch.device("cuda:0")
cpu = torch.device("cpu")
mat = Materials()
new_mat = mat.clone().to(device)
self.assertTrue(mat.ambient_color.device == cpu)
self.assertTrue(mat.diffuse_color.device == cpu)
self.assertTrue(mat.specular_color.device == cpu)
self.assertTrue(mat.shininess.device == cpu)
self.assertTrue(new_mat.ambient_color.device == device)
self.assertTrue(new_mat.diffuse_color.device == device)
self.assertTrue(new_mat.specular_color.device == device)
self.assertTrue(new_mat.shininess.device == device)
self.assertSeparate(new_mat.ambient_color, mat.ambient_color)
self.assertSeparate(new_mat.diffuse_color, mat.diffuse_color)
self.assertSeparate(new_mat.specular_color, mat.specular_color)
self.assertSeparate(new_mat.shininess, mat.shininess)
def test_initialize_materials_broadcast(self):
materials = Materials(
ambient_color=torch.randn(10, 3),
diffuse_color=torch.randn(1, 3),
specular_color=torch.randn(1, 3),
shininess=torch.randn(1),
)
self.assertTrue(materials.ambient_color.shape == (10, 3))
self.assertTrue(materials.diffuse_color.shape == (10, 3))
self.assertTrue(materials.specular_color.shape == (10, 3))
self.assertTrue(materials.shininess.shape == (10,))
def test_initialize_materials_broadcast_fail(self):
"""
Batch dims have to be the same or 1.
"""
with self.assertRaises(ValueError):
Materials(
ambient_color=torch.randn(10, 3), diffuse_color=torch.randn(15, 3)
)
def test_initialize_materials_dimensions_fail(self):
"""
Color should have shape (N, 3) or (1, 3), Shininess should have shape
(1), (1, 1), (N) or (N, 1)
"""
with self.assertRaises(ValueError):
Materials(ambient_color=torch.randn(10, 4))
with self.assertRaises(ValueError):
Materials(shininess=torch.randn(10, 2))
def test_initialize_materials_mixed_inputs(self):
mat = Materials(ambient_color=torch.randn(1, 3), diffuse_color=((1, 1, 1),))
self.assertTrue(mat.ambient_color.shape == (1, 3))
self.assertTrue(mat.diffuse_color.shape == (1, 3))
def test_initialize_materials_mixed_inputs_broadcast(self):
mat = Materials(ambient_color=torch.randn(10, 3), diffuse_color=((1, 1, 1),))
self.assertTrue(mat.ambient_color.shape == (10, 3))
self.assertTrue(mat.diffuse_color.shape == (10, 3))
self.assertTrue(mat.specular_color.shape == (10, 3))
self.assertTrue(mat.shininess.shape == (10,))
|