Spaces:
Running
Running
#!/usr/bin/env python3 | |
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
This example demonstrates the most trivial use of the pulsar PyTorch3D | |
interface for sphere renderering. It renders and saves an image with | |
10 random spheres. | |
Output: basic-pt3d.png. | |
""" | |
import logging | |
from os import path | |
import imageio | |
import torch | |
from pytorch3d.renderer import ( | |
PerspectiveCameras, | |
PointsRasterizationSettings, | |
PointsRasterizer, | |
PulsarPointsRenderer, | |
) | |
from pytorch3d.structures import Pointclouds | |
LOGGER = logging.getLogger(__name__) | |
def cli(): | |
""" | |
Basic example for the pulsar sphere renderer using the PyTorch3D interface. | |
Writes to `basic-pt3d.png`. | |
""" | |
LOGGER.info("Rendering on GPU...") | |
torch.manual_seed(1) | |
n_points = 10 | |
width = 1_000 | |
height = 1_000 | |
device = torch.device("cuda") | |
# Generate sample data. | |
vert_pos = torch.rand(n_points, 3, dtype=torch.float32, device=device) * 10.0 | |
vert_pos[:, 2] += 25.0 | |
vert_pos[:, :2] -= 5.0 | |
vert_col = torch.rand(n_points, 3, dtype=torch.float32, device=device) | |
pcl = Pointclouds(points=vert_pos[None, ...], features=vert_col[None, ...]) | |
# Alternatively, you can also use the look_at_view_transform to get R and T: | |
# R, T = look_at_view_transform( | |
# dist=30.0, elev=0.0, azim=180.0, at=((0.0, 0.0, 30.0),), up=((0, 1, 0),), | |
# ) | |
cameras = PerspectiveCameras( | |
# The focal length must be double the size for PyTorch3D because of the NDC | |
# coordinates spanning a range of two - and they must be normalized by the | |
# sensor width (see the pulsar example). This means we need here | |
# 5.0 * 2.0 / 2.0 to get the equivalent results as in pulsar. | |
focal_length=(5.0 * 2.0 / 2.0,), | |
R=torch.eye(3, dtype=torch.float32, device=device)[None, ...], | |
T=torch.zeros((1, 3), dtype=torch.float32, device=device), | |
image_size=((height, width),), | |
device=device, | |
) | |
vert_rad = torch.rand(n_points, dtype=torch.float32, device=device) | |
raster_settings = PointsRasterizationSettings( | |
image_size=(height, width), | |
radius=vert_rad, | |
) | |
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings) | |
renderer = PulsarPointsRenderer(rasterizer=rasterizer).to(device) | |
# Render. | |
image = renderer( | |
pcl, | |
gamma=(1.0e-1,), # Renderer blending parameter gamma, in [1., 1e-5]. | |
znear=(1.0,), | |
zfar=(45.0,), | |
radius_world=True, | |
bg_col=torch.ones((3,), dtype=torch.float32, device=device), | |
)[0] | |
LOGGER.info("Writing image to `%s`.", path.abspath("basic-pt3d.png")) | |
imageio.imsave( | |
"basic-pt3d.png", (image.cpu().detach() * 255.0).to(torch.uint8).numpy() | |
) | |
LOGGER.info("Done.") | |
if __name__ == "__main__": | |
logging.basicConfig(level=logging.INFO) | |
cli() | |