Spaces:
Running
Running
#!/usr/bin/env python3 | |
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
This example demonstrates scene optimization with the PyTorch3D | |
pulsar interface. For this, a reference image has been pre-generated | |
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png`). | |
The scene is initialized with random spheres. Gradient-based | |
optimization is used to converge towards a faithful | |
scene representation. | |
""" | |
import logging | |
import math | |
import cv2 | |
import imageio | |
import numpy as np | |
import torch | |
from pytorch3d.renderer.cameras import PerspectiveCameras | |
from pytorch3d.renderer.points import ( | |
PointsRasterizationSettings, | |
PointsRasterizer, | |
PulsarPointsRenderer, | |
) | |
from pytorch3d.structures.pointclouds import Pointclouds | |
from torch import nn, optim | |
LOGGER = logging.getLogger(__name__) | |
N_POINTS = 10_000 | |
WIDTH = 1_000 | |
HEIGHT = 1_000 | |
DEVICE = torch.device("cuda") | |
class SceneModel(nn.Module): | |
""" | |
A simple scene model to demonstrate use of pulsar in PyTorch modules. | |
The scene model is parameterized with sphere locations (vert_pos), | |
channel content (vert_col), radiuses (vert_rad), camera position (cam_pos), | |
camera rotation (cam_rot) and sensor focal length and width (cam_sensor). | |
The forward method of the model renders this scene description. Any | |
of these parameters could instead be passed as inputs to the forward | |
method and come from a different model. | |
""" | |
def __init__(self): | |
super(SceneModel, self).__init__() | |
self.gamma = 1.0 | |
# Points. | |
torch.manual_seed(1) | |
vert_pos = torch.rand(N_POINTS, 3, dtype=torch.float32, device=DEVICE) * 10.0 | |
vert_pos[:, 2] += 25.0 | |
vert_pos[:, :2] -= 5.0 | |
self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=True)) | |
self.register_parameter( | |
"vert_col", | |
nn.Parameter( | |
torch.ones(N_POINTS, 3, dtype=torch.float32, device=DEVICE) * 0.5, | |
requires_grad=True, | |
), | |
) | |
self.register_parameter( | |
"vert_rad", | |
nn.Parameter( | |
torch.ones(N_POINTS, dtype=torch.float32) * 0.3, requires_grad=True | |
), | |
) | |
self.register_buffer( | |
"cam_params", | |
torch.tensor( | |
[0.0, 0.0, 0.0, 0.0, math.pi, 0.0, 5.0, 2.0], dtype=torch.float32 | |
), | |
) | |
self.cameras = PerspectiveCameras( | |
# The focal length must be double the size for PyTorch3D because of the NDC | |
# coordinates spanning a range of two - and they must be normalized by the | |
# sensor width (see the pulsar example). This means we need here | |
# 5.0 * 2.0 / 2.0 to get the equivalent results as in pulsar. | |
focal_length=5.0, | |
R=torch.eye(3, dtype=torch.float32, device=DEVICE)[None, ...], | |
T=torch.zeros((1, 3), dtype=torch.float32, device=DEVICE), | |
image_size=((HEIGHT, WIDTH),), | |
device=DEVICE, | |
) | |
raster_settings = PointsRasterizationSettings( | |
image_size=(HEIGHT, WIDTH), | |
radius=self.vert_rad, | |
) | |
rasterizer = PointsRasterizer( | |
cameras=self.cameras, raster_settings=raster_settings | |
) | |
self.renderer = PulsarPointsRenderer(rasterizer=rasterizer, n_track=32) | |
def forward(self): | |
# The Pointclouds object creates copies of it's arguments - that's why | |
# we have to create a new object in every forward step. | |
pcl = Pointclouds( | |
points=self.vert_pos[None, ...], features=self.vert_col[None, ...] | |
) | |
return self.renderer( | |
pcl, | |
gamma=(self.gamma,), | |
zfar=(45.0,), | |
znear=(1.0,), | |
radius_world=True, | |
bg_col=torch.ones((3,), dtype=torch.float32, device=DEVICE), | |
)[0] | |
def cli(): | |
""" | |
Scene optimization example using pulsar and the unified PyTorch3D interface. | |
""" | |
LOGGER.info("Loading reference...") | |
# Load reference. | |
ref = ( | |
torch.from_numpy( | |
imageio.imread( | |
"../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png" | |
)[:, ::-1, :].copy() | |
).to(torch.float32) | |
/ 255.0 | |
).to(DEVICE) | |
# Set up model. | |
model = SceneModel().to(DEVICE) | |
# Optimizer. | |
optimizer = optim.SGD( | |
[ | |
{"params": [model.vert_col], "lr": 1e0}, | |
{"params": [model.vert_rad], "lr": 5e-3}, | |
{"params": [model.vert_pos], "lr": 1e-2}, | |
] | |
) | |
LOGGER.info("Optimizing...") | |
# Optimize. | |
for i in range(500): | |
optimizer.zero_grad() | |
result = model() | |
# Visualize. | |
result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8) | |
cv2.imshow("opt", result_im[:, :, ::-1]) | |
overlay_img = np.ascontiguousarray( | |
((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[ | |
:, :, ::-1 | |
] | |
) | |
overlay_img = cv2.putText( | |
overlay_img, | |
"Step %d" % (i), | |
(10, 40), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
1, | |
(0, 0, 0), | |
2, | |
cv2.LINE_AA, | |
False, | |
) | |
cv2.imshow("overlay", overlay_img) | |
cv2.waitKey(1) | |
# Update. | |
loss = ((result - ref) ** 2).sum() | |
LOGGER.info("loss %d: %f", i, loss.item()) | |
loss.backward() | |
optimizer.step() | |
# Cleanup. | |
with torch.no_grad(): | |
model.vert_col.data = torch.clamp(model.vert_col.data, 0.0, 1.0) | |
# Remove points. | |
model.vert_pos.data[model.vert_rad < 0.001, :] = -1000.0 | |
model.vert_rad.data[model.vert_rad < 0.001] = 0.0001 | |
vd = ( | |
(model.vert_col - torch.ones(3, dtype=torch.float32).to(DEVICE)) | |
.abs() | |
.sum(dim=1) | |
) | |
model.vert_pos.data[vd <= 0.2] = -1000.0 | |
LOGGER.info("Done.") | |
if __name__ == "__main__": | |
logging.basicConfig(level=logging.INFO) | |
cli() | |