linxianzhong0128's picture
Upload folder using huggingface_hub
7088d16 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import os
import tempfile
import unittest
from pathlib import Path
import torch
from hydra import compose, initialize_config_dir
from omegaconf import OmegaConf
from projects.implicitron_trainer.impl.optimizer_factory import (
ImplicitronOptimizerFactory,
)
from .. import experiment
from .utils import interactive_testing_requested, intercept_logs
internal = os.environ.get("FB_TEST", False)
DATA_DIR = Path(__file__).resolve().parent
IMPLICITRON_CONFIGS_DIR = Path(__file__).resolve().parent.parent / "configs"
DEBUG: bool = False
# TODO:
# - add enough files to skateboard_first_5 that this works on RE.
# - share common code with PyTorch3D tests?
def _parse_float_from_log(line):
return float(line.split()[-1])
class TestExperiment(unittest.TestCase):
def setUp(self):
self.maxDiff = None
def test_from_defaults(self):
# Test making minimal changes to the dataclass defaults.
if not interactive_testing_requested() or not internal:
return
# Manually override config values. Note that this is not necessary out-
# side of the tests!
cfg = OmegaConf.structured(experiment.Experiment)
cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_class_type = (
"JsonIndexDatasetMapProvider"
)
dataset_args = (
cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
)
dataloader_args = (
cfg.data_source_ImplicitronDataSource_args.data_loader_map_provider_SequenceDataLoaderMapProvider_args
)
dataset_args.category = "skateboard"
dataset_args.test_restrict_sequence_id = 0
dataset_args.dataset_root = "manifold://co3d/tree/extracted"
dataset_args.dataset_JsonIndexDataset_args.limit_sequences_to = 5
dataset_args.dataset_JsonIndexDataset_args.image_height = 80
dataset_args.dataset_JsonIndexDataset_args.image_width = 80
dataloader_args.dataset_length_train = 1
dataloader_args.dataset_length_val = 1
cfg.training_loop_ImplicitronTrainingLoop_args.max_epochs = 2
cfg.training_loop_ImplicitronTrainingLoop_args.store_checkpoints = False
cfg.optimizer_factory_ImplicitronOptimizerFactory_args.multistep_lr_milestones = [
0,
1,
]
if DEBUG:
experiment.dump_cfg(cfg)
with intercept_logs(
logger_name="projects.implicitron_trainer.impl.training_loop",
regexp="LR change!",
) as intercepted_logs:
experiment_runner = experiment.Experiment(**cfg)
experiment_runner.run()
# Make sure LR decreased on 0th and 1st epoch 10fold.
self.assertEqual(intercepted_logs[0].split()[-1], "5e-06")
def test_exponential_lr(self):
# Test making minimal changes to the dataclass defaults.
if not interactive_testing_requested():
return
cfg = OmegaConf.structured(experiment.Experiment)
cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_class_type = (
"JsonIndexDatasetMapProvider"
)
dataset_args = (
cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
)
dataloader_args = (
cfg.data_source_ImplicitronDataSource_args.data_loader_map_provider_SequenceDataLoaderMapProvider_args
)
dataset_args.category = "skateboard"
dataset_args.test_restrict_sequence_id = 0
dataset_args.dataset_root = "manifold://co3d/tree/extracted"
dataset_args.dataset_JsonIndexDataset_args.limit_sequences_to = 5
dataset_args.dataset_JsonIndexDataset_args.image_height = 80
dataset_args.dataset_JsonIndexDataset_args.image_width = 80
dataloader_args.dataset_length_train = 1
dataloader_args.dataset_length_val = 1
cfg.training_loop_ImplicitronTrainingLoop_args.max_epochs = 2
cfg.training_loop_ImplicitronTrainingLoop_args.store_checkpoints = False
cfg.optimizer_factory_ImplicitronOptimizerFactory_args.lr_policy = "Exponential"
cfg.optimizer_factory_ImplicitronOptimizerFactory_args.exponential_lr_step_size = (
2
)
if DEBUG:
experiment.dump_cfg(cfg)
with intercept_logs(
logger_name="projects.implicitron_trainer.impl.training_loop",
regexp="LR change!",
) as intercepted_logs:
experiment_runner = experiment.Experiment(**cfg)
experiment_runner.run()
# Make sure we followed the exponential lr schedule with gamma=0.1,
# exponential_lr_step_size=2 -- so after two epochs, should
# decrease lr 10x to 5e-5.
self.assertEqual(intercepted_logs[0].split()[-1], "0.00015811388300841897")
self.assertEqual(intercepted_logs[1].split()[-1], "5e-05")
def test_yaml_contents(self):
# Check that the default config values, defined by Experiment and its
# members, is what we expect it to be.
cfg = OmegaConf.structured(experiment.Experiment)
# the following removes the possible effect of env variables
ds_arg = cfg.data_source_ImplicitronDataSource_args
ds_arg.dataset_map_provider_JsonIndexDatasetMapProvider_args.dataset_root = ""
ds_arg.dataset_map_provider_JsonIndexDatasetMapProviderV2_args.dataset_root = ""
if "dataset_map_provider_SqlIndexDatasetMapProvider_args" in ds_arg:
del ds_arg.dataset_map_provider_SqlIndexDatasetMapProvider_args
cfg.training_loop_ImplicitronTrainingLoop_args.visdom_port = 8097
yaml = OmegaConf.to_yaml(cfg, sort_keys=False)
if DEBUG:
(DATA_DIR / "experiment.yaml").write_text(yaml)
self.assertEqual(yaml, (DATA_DIR / "experiment.yaml").read_text())
def test_load_configs(self):
# Check that all the pre-prepared configs are valid.
config_files = []
for pattern in (
"repro_singleseq*.yaml",
"repro_multiseq*.yaml",
"overfit_singleseq*.yaml",
):
config_files.extend(
[
f
for f in IMPLICITRON_CONFIGS_DIR.glob(pattern)
if not f.name.endswith("_base.yaml")
]
)
for file in config_files:
with self.subTest(file.name):
with initialize_config_dir(config_dir=str(IMPLICITRON_CONFIGS_DIR)):
compose(file.name)
def test_optimizer_factory(self):
model = torch.nn.Linear(2, 2)
adam, sched = ImplicitronOptimizerFactory(breed="Adam")(0, model)
self.assertIsInstance(adam, torch.optim.Adam)
sgd, sched = ImplicitronOptimizerFactory(breed="SGD")(0, model)
self.assertIsInstance(sgd, torch.optim.SGD)
adagrad, sched = ImplicitronOptimizerFactory(breed="Adagrad")(0, model)
self.assertIsInstance(adagrad, torch.optim.Adagrad)
class TestNerfRepro(unittest.TestCase):
@unittest.skip("This test runs full blender training.")
def test_nerf_blender(self):
# Train vanilla NERF.
# Set env vars BLENDER_DATASET_ROOT and BLENDER_SINGLESEQ_CLASS first!
if not interactive_testing_requested():
return
with initialize_config_dir(config_dir=str(IMPLICITRON_CONFIGS_DIR)):
cfg = compose(config_name="repro_singleseq_nerf_blender", overrides=[])
experiment_runner = experiment.Experiment(**cfg)
experiment.dump_cfg(cfg)
experiment_runner.run()
@unittest.skip("This test runs full llff training.")
def test_nerf_llff(self):
# Train vanilla NERF.
# Set env vars LLFF_DATASET_ROOT and LLFF_SINGLESEQ_CLASS first!
LLFF_SINGLESEQ_CLASS = os.environ["LLFF_SINGLESEQ_CLASS"]
if not interactive_testing_requested():
return
with initialize_config_dir(config_dir=str(IMPLICITRON_CONFIGS_DIR)):
cfg = compose(
config_name=f"repro_singleseq_nerf_llff_{LLFF_SINGLESEQ_CLASS}",
overrides=[],
)
experiment_runner = experiment.Experiment(**cfg)
experiment.dump_cfg(cfg)
experiment_runner.run()
@unittest.skip("This test runs nerf training on co3d v2 - manyview.")
def test_nerf_co3dv2_manyview(self):
# Train NERF
if not interactive_testing_requested():
return
with initialize_config_dir(config_dir=str(IMPLICITRON_CONFIGS_DIR)):
cfg = compose(
config_name="repro_singleseq_v2_nerf",
overrides=[],
)
experiment_runner = experiment.Experiment(**cfg)
experiment.dump_cfg(cfg)
experiment_runner.run()
@unittest.skip("This test runs nerformer training on co3d v2 - fewview.")
def test_nerformer_co3dv2_fewview(self):
# Train NeRFormer
if not interactive_testing_requested():
return
with initialize_config_dir(config_dir=str(IMPLICITRON_CONFIGS_DIR)):
cfg = compose(
config_name="repro_multiseq_v2_nerformer",
overrides=[],
)
experiment_runner = experiment.Experiment(**cfg)
experiment.dump_cfg(cfg)
experiment_runner.run()
@unittest.skip("This test checks resuming of the NeRF training.")
def test_nerf_blender_resume(self):
# Train one train batch of NeRF, then resume for one more batch.
# Set env vars BLENDER_DATASET_ROOT and BLENDER_SINGLESEQ_CLASS first!
if not interactive_testing_requested():
return
with initialize_config_dir(config_dir=str(IMPLICITRON_CONFIGS_DIR)):
with tempfile.TemporaryDirectory() as exp_dir:
cfg = compose(config_name="repro_singleseq_nerf_blender", overrides=[])
cfg.exp_dir = exp_dir
# set dataset len to 1
# fmt: off
(
cfg
.data_source_ImplicitronDataSource_args
.data_loader_map_provider_SequenceDataLoaderMapProvider_args
.dataset_length_train
) = 1
# fmt: on
# run for one epoch
cfg.training_loop_ImplicitronTrainingLoop_args.max_epochs = 1
experiment_runner = experiment.Experiment(**cfg)
experiment.dump_cfg(cfg)
experiment_runner.run()
# update num epochs + 2, let the optimizer resume
cfg.training_loop_ImplicitronTrainingLoop_args.max_epochs = 3
experiment_runner = experiment.Experiment(**cfg)
experiment_runner.run()
# start from scratch
cfg.model_factory_ImplicitronModelFactory_args.resume = False
experiment_runner = experiment.Experiment(**cfg)
experiment_runner.run()
# force resume from epoch 1
cfg.model_factory_ImplicitronModelFactory_args.resume = True
cfg.model_factory_ImplicitronModelFactory_args.force_resume = True
cfg.model_factory_ImplicitronModelFactory_args.resume_epoch = 1
experiment_runner = experiment.Experiment(**cfg)
experiment_runner.run()