Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
import itertools | |
import torch | |
from fvcore.common.benchmark import benchmark | |
from pytorch3d.ops import estimate_pointcloud_normals | |
from tests.test_points_normals import TestPCLNormals | |
def to_bm(num_points, use_symeig_workaround): | |
device = torch.device("cuda:0") | |
points_padded, _normals = TestPCLNormals.init_spherical_pcl( | |
num_points=num_points, device=device, use_pointclouds=False | |
) | |
torch.cuda.synchronize() | |
def run(): | |
estimate_pointcloud_normals( | |
points_padded, use_symeig_workaround=use_symeig_workaround | |
) | |
torch.cuda.synchronize() | |
return run | |
def bm_points_normals() -> None: | |
case_grid = { | |
"use_symeig_workaround": [True, False], | |
"num_points": [3000, 6000], | |
} | |
test_cases = itertools.product(*case_grid.values()) | |
kwargs_list = [dict(zip(case_grid.keys(), case)) for case in test_cases] | |
benchmark( | |
to_bm, | |
"normals", | |
kwargs_list, | |
warmup_iters=1, | |
) | |
if __name__ == "__main__": | |
bm_points_normals() | |