Linly-Talker / pytorch3d /tests /implicitron /test_viewsampling.py
linxianzhong0128's picture
Upload folder using huggingface_hub
7088d16 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import pytorch3d as pt3d
import torch
from pytorch3d.implicitron.models.view_pooler.view_sampler import ViewSampler
from pytorch3d.implicitron.tools.config import expand_args_fields
class TestViewsampling(unittest.TestCase):
def setUp(self):
torch.manual_seed(42)
expand_args_fields(ViewSampler)
def _init_view_sampler_problem(self, random_masks):
"""
Generates a view-sampling problem:
- 4 source views, 1st/2nd from the first sequence 'seq1', the rest from 'seq2'
- 3 sets of 3D points from sequences 'seq1', 'seq2', 'seq2' respectively.
- first 50 points in each batch correctly project to the source views,
while the remaining 50 do not land in any projection plane.
- each source view is labeled with image feature tensors of shape 7x100x50,
where all elements of the n-th tensor are set to `n+1`.
- the elements of the source view masks are either set to random binary number
(if `random_masks==True`), or all set to 1 (`random_masks==False`).
- the source view cameras are uniformly distributed on a unit circle
in the x-z plane and look at (0,0,0).
"""
seq_id_camera = ["seq1", "seq1", "seq2", "seq2"]
seq_id_pts = ["seq1", "seq2", "seq2"]
pts_batch = 3
n_pts = 100
n_views = 4
fdim = 7
H = 100
W = 50
# points that land into the projection planes of all cameras
pts_inside = (
torch.nn.functional.normalize(
torch.randn(pts_batch, n_pts // 2, 3, device="cuda"),
dim=-1,
)
* 0.1
)
# move the outside points far above the scene
pts_outside = pts_inside.clone()
pts_outside[:, :, 1] += 1e8
pts = torch.cat([pts_inside, pts_outside], dim=1)
R, T = pt3d.renderer.look_at_view_transform(
dist=1.0,
elev=0.0,
azim=torch.linspace(0, 360, n_views + 1)[:n_views],
degrees=True,
device=pts.device,
)
focal_length = R.new_ones(n_views, 2)
principal_point = R.new_zeros(n_views, 2)
camera = pt3d.renderer.PerspectiveCameras(
R=R,
T=T,
focal_length=focal_length,
principal_point=principal_point,
device=pts.device,
)
feats_map = torch.arange(n_views, device=pts.device, dtype=pts.dtype) + 1
feats = {"feats": feats_map[:, None, None, None].repeat(1, fdim, H, W)}
masks = (
torch.rand(n_views, 1, H, W, device=pts.device, dtype=pts.dtype) > 0.5
).type_as(R)
if not random_masks:
masks[:] = 1.0
return pts, camera, feats, masks, seq_id_camera, seq_id_pts
def test_compare_with_naive(self):
"""
Compares the outputs of the efficient ViewSampler module with a
naive implementation.
"""
(
pts,
camera,
feats,
masks,
seq_id_camera,
seq_id_pts,
) = self._init_view_sampler_problem(True)
for masked_sampling in (True, False):
feats_sampled_n, masks_sampled_n = _view_sample_naive(
pts,
seq_id_pts,
camera,
seq_id_camera,
feats,
masks,
masked_sampling,
)
# make sure we generate the constructor for ViewSampler
expand_args_fields(ViewSampler)
view_sampler = ViewSampler(masked_sampling=masked_sampling)
feats_sampled, masks_sampled = view_sampler(
pts=pts,
seq_id_pts=seq_id_pts,
camera=camera,
seq_id_camera=seq_id_camera,
feats=feats,
masks=masks,
)
for k in feats_sampled.keys():
self.assertTrue(torch.allclose(feats_sampled[k], feats_sampled_n[k]))
self.assertTrue(torch.allclose(masks_sampled, masks_sampled_n))
def test_viewsampling(self):
"""
Generates a viewsampling problem with predictable outcome, and compares
the ViewSampler's output to the expected result.
"""
(
pts,
camera,
feats,
masks,
seq_id_camera,
seq_id_pts,
) = self._init_view_sampler_problem(False)
expand_args_fields(ViewSampler)
for masked_sampling in (True, False):
view_sampler = ViewSampler(masked_sampling=masked_sampling)
feats_sampled, masks_sampled = view_sampler(
pts=pts,
seq_id_pts=seq_id_pts,
camera=camera,
seq_id_camera=seq_id_camera,
feats=feats,
masks=masks,
)
n_views = camera.R.shape[0]
n_pts = pts.shape[1]
feat_dim = feats["feats"].shape[1]
pts_batch = pts.shape[0]
n_pts_away = n_pts // 2
for pts_i in range(pts_batch):
for view_i in range(n_views):
if seq_id_pts[pts_i] != seq_id_camera[view_i]:
# points / cameras come from different sequences
gt_masks = pts.new_zeros(n_pts, 1)
gt_feats = pts.new_zeros(n_pts, feat_dim)
else:
gt_masks = pts.new_ones(n_pts, 1)
gt_feats = pts.new_ones(n_pts, feat_dim) * (view_i + 1)
gt_feats[n_pts_away:] = 0.0
if masked_sampling:
gt_masks[n_pts_away:] = 0.0
for k in feats_sampled:
self.assertTrue(
torch.allclose(
feats_sampled[k][pts_i, view_i],
gt_feats,
)
)
self.assertTrue(
torch.allclose(
masks_sampled[pts_i, view_i],
gt_masks,
)
)
def _view_sample_naive(
pts,
seq_id_pts,
camera,
seq_id_camera,
feats,
masks,
masked_sampling,
):
"""
A naive implementation of the forward pass of ViewSampler.
Refer to ViewSampler's docstring for description of the arguments.
"""
pts_batch = pts.shape[0]
n_views = camera.R.shape[0]
n_pts = pts.shape[1]
feats_sampled = [[[] for _ in range(n_views)] for _ in range(pts_batch)]
masks_sampled = [[[] for _ in range(n_views)] for _ in range(pts_batch)]
for pts_i in range(pts_batch):
for view_i in range(n_views):
if seq_id_pts[pts_i] != seq_id_camera[view_i]:
# points/cameras come from different sequences
feats_sampled_ = {
k: f.new_zeros(n_pts, f.shape[1]) for k, f in feats.items()
}
masks_sampled_ = masks.new_zeros(n_pts, 1)
else:
# same sequence of pts and cameras -> sample
feats_sampled_, masks_sampled_ = _sample_one_view_naive(
camera[view_i],
pts[pts_i],
{k: f[view_i] for k, f in feats.items()},
masks[view_i],
masked_sampling,
sampling_mode="bilinear",
)
feats_sampled[pts_i][view_i] = feats_sampled_
masks_sampled[pts_i][view_i] = masks_sampled_
masks_sampled_cat = torch.stack([torch.stack(m) for m in masks_sampled])
feats_sampled_cat = {}
for k in feats_sampled[0][0].keys():
feats_sampled_cat[k] = torch.stack(
[torch.stack([f_[k] for f_ in f]) for f in feats_sampled]
)
return feats_sampled_cat, masks_sampled_cat
def _sample_one_view_naive(
camera,
pts,
feats,
masks,
masked_sampling,
sampling_mode="bilinear",
):
"""
Sample a single source view.
"""
proj_ndc = camera.transform_points(pts[None])[None, ..., :-1] # 1 x 1 x n_pts x 2
feats_sampled = {
k: pt3d.renderer.ndc_grid_sample(f[None], proj_ndc, mode=sampling_mode).permute(
0, 3, 1, 2
)[0, :, :, 0]
for k, f in feats.items()
} # n_pts x dim
if not masked_sampling:
n_pts = pts.shape[0]
masks_sampled = proj_ndc.new_ones(n_pts, 1)
else:
masks_sampled = pt3d.renderer.ndc_grid_sample(
masks[None],
proj_ndc,
mode=sampling_mode,
align_corners=False,
)[0, 0, 0, :][:, None]
return feats_sampled, masks_sampled