Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import pickle | |
import unittest | |
import torch | |
from pytorch3d.ops.marching_cubes import marching_cubes, marching_cubes_naive | |
from .common_testing import get_tests_dir, TestCaseMixin | |
USE_SCIKIT = False | |
DATA_DIR = get_tests_dir() / "data" | |
def convert_to_local(verts, volume_dim): | |
return (2 * verts) / (volume_dim - 1) - 1 | |
class TestCubeConfiguration(TestCaseMixin, unittest.TestCase): | |
# Test single cubes. Each case corresponds to the corresponding | |
# cube vertex configuration in each case here (0-indexed): | |
# https://en.wikipedia.org/wiki/Marching_cubes#/media/File:MarchingCubes.svg | |
def test_empty_volume(self): # case 0 | |
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
expected_verts = torch.tensor([[]]) | |
expected_faces = torch.tensor([[]], dtype=torch.int64) | |
self.assertClose(verts, expected_verts) | |
self.assertClose(faces, expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=False) | |
self.assertClose(verts, expected_verts) | |
self.assertClose(faces, expected_faces) | |
def test_case1(self): # case 1 | |
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D) | |
volume_data[0, 0, 0, 0] = 0 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
expected_verts = torch.tensor( | |
[ | |
[0.5, 0, 0], | |
[0, 0.5, 0], | |
[0, 0, 0.5], | |
] | |
) | |
expected_faces = torch.tensor([[0, 1, 2]]) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
expected_verts = convert_to_local(expected_verts, 2) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
def test_case2(self): | |
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D) | |
volume_data[0, 0:2, 0, 0] = 0 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
expected_verts = torch.tensor( | |
[ | |
[1.0000, 0.0000, 0.5000], | |
[0.0000, 0.5000, 0.0000], | |
[0.0000, 0.0000, 0.5000], | |
[1.0000, 0.5000, 0.0000], | |
] | |
) | |
expected_faces = torch.tensor([[0, 1, 2], [3, 1, 0]]) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) | |
expected_verts = convert_to_local(expected_verts, 2) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
def test_case3(self): | |
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D) | |
volume_data[0, 0, 0, 0] = 0 | |
volume_data[0, 1, 1, 0] = 0 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
expected_verts = torch.tensor( | |
[ | |
[1.0000, 0.5000, 0.0000], | |
[1.0000, 1.0000, 0.5000], | |
[0.5000, 1.0000, 0.0000], | |
[0.5000, 0.0000, 0.0000], | |
[0.0000, 0.5000, 0.0000], | |
[0.0000, 0.0000, 0.5000], | |
] | |
) | |
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5]]) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) | |
expected_verts = convert_to_local(expected_verts, 2) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
def test_case4(self): | |
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D) | |
volume_data[0, 1, 0, 0] = 0 | |
volume_data[0, 1, 0, 1] = 0 | |
volume_data[0, 0, 0, 1] = 0 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
expected_verts = torch.tensor( | |
[ | |
[0.0000, 0.0000, 0.5000], | |
[1.0000, 0.5000, 0.0000], | |
[0.5000, 0.0000, 0.0000], | |
[0.0000, 0.5000, 1.0000], | |
[1.0000, 0.5000, 1.0000], | |
] | |
) | |
expected_faces = torch.tensor([[0, 1, 2], [0, 3, 1], [3, 4, 1]]) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) | |
expected_verts = convert_to_local(expected_verts, 2) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
def test_case5(self): | |
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D) | |
volume_data[0, 0:2, 0, 0:2] = 0 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
expected_verts = torch.tensor( | |
[ | |
[1.0000, 0.5000, 0.0000], | |
[0.0000, 0.5000, 0.0000], | |
[1.0000, 0.5000, 1.0000], | |
[0.0000, 0.5000, 1.0000], | |
] | |
) | |
expected_faces = torch.tensor([[0, 1, 2], [2, 1, 3]]) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) | |
expected_verts = convert_to_local(expected_verts, 2) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
def test_case6(self): | |
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D) | |
volume_data[0, 1, 0, 0] = 0 | |
volume_data[0, 1, 0, 1] = 0 | |
volume_data[0, 0, 0, 1] = 0 | |
volume_data[0, 0, 1, 0] = 0 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
expected_verts = torch.tensor( | |
[ | |
[0.5000, 1.0000, 0.0000], | |
[0.0000, 1.0000, 0.5000], | |
[0.0000, 0.5000, 0.0000], | |
[1.0000, 0.5000, 0.0000], | |
[0.5000, 0.0000, 0.0000], | |
[0.0000, 0.5000, 1.0000], | |
[1.0000, 0.5000, 1.0000], | |
[0.0000, 0.0000, 0.5000], | |
] | |
) | |
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5], [3, 5, 6], [5, 4, 7]]) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) | |
expected_verts = convert_to_local(expected_verts, 2) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
def test_case7(self): | |
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D) | |
volume_data[0, 0, 0, 0] = 0 | |
volume_data[0, 1, 0, 1] = 0 | |
volume_data[0, 1, 1, 0] = 0 | |
volume_data[0, 0, 1, 1] = 0 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
expected_verts = torch.tensor( | |
[ | |
[0.5000, 1.0000, 1.0000], | |
[0.0000, 0.5000, 1.0000], | |
[0.0000, 1.0000, 0.5000], | |
[1.0000, 0.0000, 0.5000], | |
[0.5000, 0.0000, 1.0000], | |
[1.0000, 0.5000, 1.0000], | |
[0.5000, 0.0000, 0.0000], | |
[0.0000, 0.5000, 0.0000], | |
[0.0000, 0.0000, 0.5000], | |
[0.5000, 1.0000, 0.0000], | |
[1.0000, 0.5000, 0.0000], | |
[1.0000, 1.0000, 0.5000], | |
] | |
) | |
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) | |
expected_verts = convert_to_local(expected_verts, 2) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
def test_case8(self): | |
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D) | |
volume_data[0, 0, 0, 0] = 0 | |
volume_data[0, 0, 0, 1] = 0 | |
volume_data[0, 1, 0, 1] = 0 | |
volume_data[0, 0, 1, 1] = 0 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
expected_verts = torch.tensor( | |
[ | |
[1.0000, 0.5000, 1.0000], | |
[0.0000, 1.0000, 0.5000], | |
[0.5000, 1.0000, 1.0000], | |
[1.0000, 0.0000, 0.5000], | |
[0.0000, 0.5000, 0.0000], | |
[0.5000, 0.0000, 0.0000], | |
] | |
) | |
expected_faces = torch.tensor([[0, 1, 2], [3, 1, 0], [3, 4, 1], [3, 5, 4]]) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) | |
expected_verts = convert_to_local(expected_verts, 2) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
def test_case9(self): | |
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D) | |
volume_data[0, 1, 0, 0] = 0 | |
volume_data[0, 0, 0, 1] = 0 | |
volume_data[0, 1, 0, 1] = 0 | |
volume_data[0, 0, 1, 1] = 0 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
expected_verts = torch.tensor( | |
[ | |
[0.5000, 0.0000, 0.0000], | |
[0.0000, 0.0000, 0.5000], | |
[0.0000, 1.0000, 0.5000], | |
[1.0000, 0.5000, 1.0000], | |
[1.0000, 0.5000, 0.0000], | |
[0.5000, 1.0000, 1.0000], | |
] | |
) | |
expected_faces = torch.tensor([[0, 1, 2], [0, 2, 3], [0, 3, 4], [5, 3, 2]]) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) | |
expected_verts = convert_to_local(expected_verts, 2) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
def test_case10(self): | |
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D) | |
volume_data[0, 0, 0, 0] = 0 | |
volume_data[0, 1, 1, 1] = 0 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
expected_verts = torch.tensor( | |
[ | |
[0.5000, 0.0000, 0.0000], | |
[0.0000, 0.5000, 0.0000], | |
[0.0000, 0.0000, 0.5000], | |
[1.0000, 1.0000, 0.5000], | |
[1.0000, 0.5000, 1.0000], | |
[0.5000, 1.0000, 1.0000], | |
] | |
) | |
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5]]) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) | |
expected_verts = convert_to_local(expected_verts, 2) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
def test_case11(self): | |
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D) | |
volume_data[0, 0, 0, 0] = 0 | |
volume_data[0, 1, 0, 0] = 0 | |
volume_data[0, 1, 1, 1] = 0 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
expected_verts = torch.tensor( | |
[ | |
[1.0000, 0.0000, 0.5000], | |
[0.0000, 0.5000, 0.0000], | |
[0.0000, 0.0000, 0.5000], | |
[1.0000, 0.5000, 0.0000], | |
[1.0000, 1.0000, 0.5000], | |
[1.0000, 0.5000, 1.0000], | |
[0.5000, 1.0000, 1.0000], | |
] | |
) | |
expected_faces = torch.tensor([[0, 1, 2], [0, 3, 1], [4, 5, 6]]) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) | |
expected_verts = convert_to_local(expected_verts, 2) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
def test_case12(self): | |
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D) | |
volume_data[0, 1, 0, 0] = 0 | |
volume_data[0, 0, 1, 0] = 0 | |
volume_data[0, 1, 1, 1] = 0 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
expected_verts = torch.tensor( | |
[ | |
[1.0000, 0.0000, 0.5000], | |
[1.0000, 0.5000, 0.0000], | |
[0.5000, 0.0000, 0.0000], | |
[1.0000, 1.0000, 0.5000], | |
[1.0000, 0.5000, 1.0000], | |
[0.5000, 1.0000, 1.0000], | |
[0.0000, 0.5000, 0.0000], | |
[0.5000, 1.0000, 0.0000], | |
[0.0000, 1.0000, 0.5000], | |
] | |
) | |
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) | |
expected_verts = convert_to_local(expected_verts, 2) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
def test_case13(self): | |
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D) | |
volume_data[0, 0, 0, 0] = 0 | |
volume_data[0, 0, 1, 0] = 0 | |
volume_data[0, 1, 0, 1] = 0 | |
volume_data[0, 1, 1, 1] = 0 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
expected_verts = torch.tensor( | |
[ | |
[1.0000, 0.0000, 0.5000], | |
[0.5000, 0.0000, 1.0000], | |
[1.0000, 1.0000, 0.5000], | |
[0.5000, 1.0000, 1.0000], | |
[0.0000, 0.0000, 0.5000], | |
[0.5000, 0.0000, 0.0000], | |
[0.5000, 1.0000, 0.0000], | |
[0.0000, 1.0000, 0.5000], | |
] | |
) | |
expected_faces = torch.tensor([[0, 1, 2], [2, 1, 3], [4, 5, 6], [4, 6, 7]]) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) | |
expected_verts = convert_to_local(expected_verts, 2) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
def test_case14(self): | |
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D) | |
volume_data[0, 0, 0, 0] = 0 | |
volume_data[0, 0, 0, 1] = 0 | |
volume_data[0, 1, 0, 1] = 0 | |
volume_data[0, 1, 1, 1] = 0 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
expected_verts = torch.tensor( | |
[ | |
[0.5000, 0.0000, 0.0000], | |
[0.0000, 0.5000, 0.0000], | |
[0.0000, 0.5000, 1.0000], | |
[1.0000, 1.0000, 0.5000], | |
[1.0000, 0.0000, 0.5000], | |
[0.5000, 1.0000, 1.0000], | |
] | |
) | |
expected_faces = torch.tensor([[0, 1, 2], [0, 2, 3], [0, 3, 4], [3, 2, 5]]) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) | |
expected_verts = convert_to_local(expected_verts, 2) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
class TestMarchingCubes(TestCaseMixin, unittest.TestCase): | |
def test_single_point(self): | |
volume_data = torch.zeros(1, 3, 3, 3) # (B, W, H, D) | |
volume_data[0, 1, 1, 1] = 1 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
expected_verts = torch.tensor( | |
[ | |
[1.0000, 0.5000, 1.0000], | |
[1.0000, 1.0000, 0.5000], | |
[0.5000, 1.0000, 1.0000], | |
[1.5000, 1.0000, 1.0000], | |
[1.0000, 1.5000, 1.0000], | |
[1.0000, 1.0000, 1.5000], | |
] | |
) | |
expected_faces = torch.tensor( | |
[ | |
[0, 1, 2], | |
[1, 0, 3], | |
[1, 4, 2], | |
[1, 3, 4], | |
[0, 2, 5], | |
[3, 0, 5], | |
[2, 4, 5], | |
[3, 5, 4], | |
] | |
) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) | |
expected_verts = convert_to_local(expected_verts, 3) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all()) | |
verts, faces = marching_cubes(volume_data, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all()) | |
def test_cube(self): | |
volume_data = torch.zeros(1, 5, 5, 5) # (B, W, H, D) | |
volume_data[0, 1, 1, 1] = 1 | |
volume_data[0, 1, 1, 2] = 1 | |
volume_data[0, 2, 1, 1] = 1 | |
volume_data[0, 2, 1, 2] = 1 | |
volume_data[0, 1, 2, 1] = 1 | |
volume_data[0, 1, 2, 2] = 1 | |
volume_data[0, 2, 2, 1] = 1 | |
volume_data[0, 2, 2, 2] = 1 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
expected_verts = torch.tensor( | |
[ | |
[1.0000, 0.9000, 1.0000], | |
[1.0000, 1.0000, 0.9000], | |
[0.9000, 1.0000, 1.0000], | |
[2.0000, 0.9000, 1.0000], | |
[2.0000, 1.0000, 0.9000], | |
[2.1000, 1.0000, 1.0000], | |
[1.0000, 2.0000, 0.9000], | |
[0.9000, 2.0000, 1.0000], | |
[2.0000, 2.0000, 0.9000], | |
[2.1000, 2.0000, 1.0000], | |
[1.0000, 2.1000, 1.0000], | |
[2.0000, 2.1000, 1.0000], | |
[1.0000, 0.9000, 2.0000], | |
[0.9000, 1.0000, 2.0000], | |
[2.0000, 0.9000, 2.0000], | |
[2.1000, 1.0000, 2.0000], | |
[0.9000, 2.0000, 2.0000], | |
[2.1000, 2.0000, 2.0000], | |
[1.0000, 2.1000, 2.0000], | |
[2.0000, 2.1000, 2.0000], | |
[1.0000, 1.0000, 2.1000], | |
[2.0000, 1.0000, 2.1000], | |
[1.0000, 2.0000, 2.1000], | |
[2.0000, 2.0000, 2.1000], | |
] | |
) | |
expected_faces = torch.tensor( | |
[ | |
[0, 1, 2], | |
[0, 3, 4], | |
[1, 0, 4], | |
[4, 3, 5], | |
[1, 6, 7], | |
[2, 1, 7], | |
[4, 8, 1], | |
[1, 8, 6], | |
[8, 4, 5], | |
[9, 8, 5], | |
[6, 10, 7], | |
[6, 8, 11], | |
[10, 6, 11], | |
[8, 9, 11], | |
[12, 0, 2], | |
[13, 12, 2], | |
[3, 0, 14], | |
[14, 0, 12], | |
[15, 5, 3], | |
[14, 15, 3], | |
[2, 7, 13], | |
[7, 16, 13], | |
[5, 15, 9], | |
[9, 15, 17], | |
[10, 18, 16], | |
[7, 10, 16], | |
[11, 19, 10], | |
[19, 18, 10], | |
[9, 17, 19], | |
[11, 9, 19], | |
[12, 13, 20], | |
[14, 12, 20], | |
[21, 14, 20], | |
[15, 14, 21], | |
[13, 16, 22], | |
[20, 13, 22], | |
[21, 20, 23], | |
[20, 22, 23], | |
[17, 15, 21], | |
[23, 17, 21], | |
[16, 18, 22], | |
[23, 22, 18], | |
[19, 23, 18], | |
[17, 23, 19], | |
] | |
) | |
verts, faces = marching_cubes_naive(volume_data, 0.9, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, 0.9, return_local_coords=False) | |
verts2, faces2 = marching_cubes(volume_data, 0.9, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive(volume_data, 0.9, return_local_coords=True) | |
expected_verts = convert_to_local(expected_verts, 5) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
# Check all values are in the range [-1, 1] | |
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all()) | |
verts, faces = marching_cubes(volume_data, 0.9, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all()) | |
def test_cube_no_duplicate_verts(self): | |
volume_data = torch.zeros(1, 5, 5, 5) # (B, W, H, D) | |
volume_data[0, 1, 1, 1] = 1 | |
volume_data[0, 1, 1, 2] = 1 | |
volume_data[0, 2, 1, 1] = 1 | |
volume_data[0, 2, 1, 2] = 1 | |
volume_data[0, 1, 2, 1] = 1 | |
volume_data[0, 1, 2, 2] = 1 | |
volume_data[0, 2, 2, 1] = 1 | |
volume_data[0, 2, 2, 2] = 1 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume_data, 1, return_local_coords=False) | |
expected_verts = torch.tensor( | |
[ | |
[2.0, 1.0, 1.0], | |
[2.0, 2.0, 1.0], | |
[1.0, 1.0, 1.0], | |
[1.0, 2.0, 1.0], | |
[2.0, 1.0, 1.0], | |
[1.0, 1.0, 1.0], | |
[2.0, 1.0, 2.0], | |
[1.0, 1.0, 2.0], | |
[1.0, 1.0, 1.0], | |
[1.0, 2.0, 1.0], | |
[1.0, 1.0, 2.0], | |
[1.0, 2.0, 2.0], | |
[2.0, 1.0, 1.0], | |
[2.0, 1.0, 2.0], | |
[2.0, 2.0, 1.0], | |
[2.0, 2.0, 2.0], | |
[2.0, 2.0, 1.0], | |
[2.0, 2.0, 2.0], | |
[1.0, 2.0, 1.0], | |
[1.0, 2.0, 2.0], | |
[2.0, 1.0, 2.0], | |
[1.0, 1.0, 2.0], | |
[2.0, 2.0, 2.0], | |
[1.0, 2.0, 2.0], | |
] | |
) | |
expected_faces = torch.tensor( | |
[ | |
[0, 1, 2], | |
[2, 1, 3], | |
[4, 5, 6], | |
[6, 5, 7], | |
[8, 9, 10], | |
[9, 11, 10], | |
[12, 13, 14], | |
[14, 13, 15], | |
[16, 17, 18], | |
[17, 19, 18], | |
[20, 21, 22], | |
[21, 23, 22], | |
] | |
) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume_data, 1, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive(volume_data, 1, return_local_coords=True) | |
expected_verts = convert_to_local(expected_verts, 5) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all()) | |
def test_sphere(self): | |
# (B, W, H, D) | |
volume = torch.Tensor( | |
[ | |
[ | |
[(x - 10) ** 2 + (y - 10) ** 2 + (z - 10) ** 2 for z in range(20)] | |
for y in range(20) | |
] | |
for x in range(20) | |
] | |
).unsqueeze(0) | |
volume = volume.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive( | |
volume, isolevel=64, return_local_coords=False | |
) | |
data_filename = "test_marching_cubes_data/sphere_level64.pickle" | |
filename = os.path.join(DATA_DIR, data_filename) | |
with open(filename, "rb") as file: | |
verts_and_faces = pickle.load(file) | |
expected_verts = verts_and_faces["verts"] | |
expected_faces = verts_and_faces["faces"] | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes(volume, 64, return_local_coords=False) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
verts, faces = marching_cubes_naive( | |
volume, isolevel=64, return_local_coords=True | |
) | |
expected_verts = convert_to_local(expected_verts, 20) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
# Check all values are in the range [-1, 1] | |
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all()) | |
verts, faces = marching_cubes(volume, 64, return_local_coords=True) | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all()) | |
# Uses skimage.draw.ellipsoid | |
def test_double_ellipsoid(self): | |
if USE_SCIKIT: | |
import numpy as np | |
from skimage.draw import ellipsoid | |
ellip_base = ellipsoid(6, 10, 16, levelset=True) | |
ellip_double = np.concatenate( | |
(ellip_base[:-1, ...], ellip_base[2:, ...]), axis=0 | |
) | |
volume = torch.Tensor(ellip_double).unsqueeze(0) | |
volume = volume.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume, isolevel=0.001) | |
verts2, faces2 = marching_cubes(volume, isolevel=0.001) | |
data_filename = "test_marching_cubes_data/double_ellipsoid.pickle" | |
filename = os.path.join(DATA_DIR, data_filename) | |
with open(filename, "rb") as file: | |
verts_and_faces = pickle.load(file) | |
expected_verts = verts_and_faces["verts"] | |
expected_faces = verts_and_faces["faces"] | |
self.assertClose(verts[0], expected_verts) | |
self.assertClose(faces[0], expected_faces) | |
self.assertClose(verts2[0], expected_verts) | |
self.assertClose(faces2[0], expected_faces) | |
def test_single_large_ellipsoid(self): | |
if USE_SCIKIT: | |
from skimage.draw import ellipsoid | |
ellip_base = ellipsoid(50, 60, 16, levelset=True) | |
volume = torch.Tensor(ellip_base).unsqueeze(0).cpu() | |
verts, faces = marching_cubes_naive(volume, 0) | |
verts2, faces2 = marching_cubes(volume, 0) | |
self.assertClose(verts[0], verts2[0], atol=1e-6) | |
self.assertClose(faces[0], faces2[0], atol=1e-6) | |
def test_cube_surface_area(self): | |
if USE_SCIKIT: | |
from skimage.measure import marching_cubes_classic, mesh_surface_area | |
volume_data = torch.zeros(1, 5, 5, 5) | |
volume_data[0, 1, 1, 1] = 1 | |
volume_data[0, 1, 1, 2] = 1 | |
volume_data[0, 2, 1, 1] = 1 | |
volume_data[0, 2, 1, 2] = 1 | |
volume_data[0, 1, 2, 1] = 1 | |
volume_data[0, 1, 2, 2] = 1 | |
volume_data[0, 2, 2, 1] = 1 | |
volume_data[0, 2, 2, 2] = 1 | |
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) | |
verts_c, faces_c = marching_cubes(volume_data, return_local_coords=False) | |
verts_sci, faces_sci = marching_cubes_classic(volume_data[0]) | |
surf = mesh_surface_area(verts[0], faces[0]) | |
surf_c = mesh_surface_area(verts_c[0], faces_c[0]) | |
surf_sci = mesh_surface_area(verts_sci, faces_sci) | |
self.assertClose(surf, surf_sci) | |
self.assertClose(surf, surf_c) | |
def test_sphere_surface_area(self): | |
if USE_SCIKIT: | |
from skimage.measure import marching_cubes_classic, mesh_surface_area | |
# (B, W, H, D) | |
volume = torch.Tensor( | |
[ | |
[ | |
[ | |
(x - 10) ** 2 + (y - 10) ** 2 + (z - 10) ** 2 | |
for z in range(20) | |
] | |
for y in range(20) | |
] | |
for x in range(20) | |
] | |
).unsqueeze(0) | |
volume = volume.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume, isolevel=64) | |
verts_c, faces_c = marching_cubes(volume, isolevel=64) | |
verts_sci, faces_sci = marching_cubes_classic(volume[0], level=64) | |
surf = mesh_surface_area(verts[0], faces[0]) | |
surf_c = mesh_surface_area(verts_c[0], faces_c[0]) | |
surf_sci = mesh_surface_area(verts_sci, faces_sci) | |
self.assertClose(surf, surf_sci) | |
self.assertClose(surf, surf_c) | |
def test_double_ellipsoid_surface_area(self): | |
if USE_SCIKIT: | |
import numpy as np | |
from skimage.draw import ellipsoid | |
from skimage.measure import marching_cubes_classic, mesh_surface_area | |
ellip_base = ellipsoid(6, 10, 16, levelset=True) | |
ellip_double = np.concatenate( | |
(ellip_base[:-1, ...], ellip_base[2:, ...]), axis=0 | |
) | |
volume = torch.Tensor(ellip_double).unsqueeze(0) | |
volume = volume.permute(0, 3, 2, 1) # (B, D, H, W) | |
verts, faces = marching_cubes_naive(volume, isolevel=0) | |
verts_c, faces_c = marching_cubes(volume, isolevel=0) | |
verts_sci, faces_sci = marching_cubes_classic(volume[0], level=0) | |
surf = mesh_surface_area(verts[0], faces[0]) | |
surf_c = mesh_surface_area(verts_c[0], faces_c[0]) | |
surf_sci = mesh_surface_area(verts_sci, faces_sci) | |
self.assertClose(surf, surf_sci) | |
self.assertClose(surf, surf_c) | |
def test_ball_example(self): | |
N = 30 | |
axis_tensor = torch.arange(0, N) | |
X, Y, Z = torch.meshgrid(axis_tensor, axis_tensor, axis_tensor, indexing="ij") | |
u = (X - 15) ** 2 + (Y - 15) ** 2 + (Z - 15) ** 2 - 8**2 | |
u = u[None].float() | |
verts, faces = marching_cubes_naive(u, 0, return_local_coords=False) | |
verts2, faces2 = marching_cubes(u, 0, return_local_coords=False) | |
self.assertClose(verts2[0], verts[0]) | |
self.assertClose(faces2[0], faces[0]) | |
verts3, faces3 = marching_cubes(u.cuda(), 0, return_local_coords=False) | |
self.assertEqual(len(verts3), len(verts)) | |
self.assertEqual(len(faces3), len(faces)) | |
def marching_cubes_with_init(algo_type: str, batch_size: int, V: int, device: str): | |
device = torch.device(device) | |
volume_data = torch.rand( | |
(batch_size, V, V, V), dtype=torch.float32, device=device | |
) | |
algo_table = { | |
"naive": marching_cubes_naive, | |
"extension": marching_cubes, | |
} | |
def convert(): | |
algo_table[algo_type](volume_data, return_local_coords=False) | |
torch.cuda.synchronize() | |
return convert | |