Linly-Talker / pytorch3d /tests /test_marching_cubes.py
linxianzhong0128's picture
Upload folder using huggingface_hub
7088d16 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import pickle
import unittest
import torch
from pytorch3d.ops.marching_cubes import marching_cubes, marching_cubes_naive
from .common_testing import get_tests_dir, TestCaseMixin
USE_SCIKIT = False
DATA_DIR = get_tests_dir() / "data"
def convert_to_local(verts, volume_dim):
return (2 * verts) / (volume_dim - 1) - 1
class TestCubeConfiguration(TestCaseMixin, unittest.TestCase):
# Test single cubes. Each case corresponds to the corresponding
# cube vertex configuration in each case here (0-indexed):
# https://en.wikipedia.org/wiki/Marching_cubes#/media/File:MarchingCubes.svg
def test_empty_volume(self): # case 0
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
expected_verts = torch.tensor([[]])
expected_faces = torch.tensor([[]], dtype=torch.int64)
self.assertClose(verts, expected_verts)
self.assertClose(faces, expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=False)
self.assertClose(verts, expected_verts)
self.assertClose(faces, expected_faces)
def test_case1(self): # case 1
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D)
volume_data[0, 0, 0, 0] = 0
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
expected_verts = torch.tensor(
[
[0.5, 0, 0],
[0, 0.5, 0],
[0, 0, 0.5],
]
)
expected_faces = torch.tensor([[0, 1, 2]])
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
expected_verts = convert_to_local(expected_verts, 2)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
def test_case2(self):
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D)
volume_data[0, 0:2, 0, 0] = 0
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
expected_verts = torch.tensor(
[
[1.0000, 0.0000, 0.5000],
[0.0000, 0.5000, 0.0000],
[0.0000, 0.0000, 0.5000],
[1.0000, 0.5000, 0.0000],
]
)
expected_faces = torch.tensor([[0, 1, 2], [3, 1, 0]])
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
expected_verts = convert_to_local(expected_verts, 2)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
def test_case3(self):
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D)
volume_data[0, 0, 0, 0] = 0
volume_data[0, 1, 1, 0] = 0
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
expected_verts = torch.tensor(
[
[1.0000, 0.5000, 0.0000],
[1.0000, 1.0000, 0.5000],
[0.5000, 1.0000, 0.0000],
[0.5000, 0.0000, 0.0000],
[0.0000, 0.5000, 0.0000],
[0.0000, 0.0000, 0.5000],
]
)
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5]])
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
expected_verts = convert_to_local(expected_verts, 2)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
def test_case4(self):
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D)
volume_data[0, 1, 0, 0] = 0
volume_data[0, 1, 0, 1] = 0
volume_data[0, 0, 0, 1] = 0
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
expected_verts = torch.tensor(
[
[0.0000, 0.0000, 0.5000],
[1.0000, 0.5000, 0.0000],
[0.5000, 0.0000, 0.0000],
[0.0000, 0.5000, 1.0000],
[1.0000, 0.5000, 1.0000],
]
)
expected_faces = torch.tensor([[0, 1, 2], [0, 3, 1], [3, 4, 1]])
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
expected_verts = convert_to_local(expected_verts, 2)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
def test_case5(self):
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D)
volume_data[0, 0:2, 0, 0:2] = 0
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
expected_verts = torch.tensor(
[
[1.0000, 0.5000, 0.0000],
[0.0000, 0.5000, 0.0000],
[1.0000, 0.5000, 1.0000],
[0.0000, 0.5000, 1.0000],
]
)
expected_faces = torch.tensor([[0, 1, 2], [2, 1, 3]])
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
expected_verts = convert_to_local(expected_verts, 2)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
def test_case6(self):
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D)
volume_data[0, 1, 0, 0] = 0
volume_data[0, 1, 0, 1] = 0
volume_data[0, 0, 0, 1] = 0
volume_data[0, 0, 1, 0] = 0
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
expected_verts = torch.tensor(
[
[0.5000, 1.0000, 0.0000],
[0.0000, 1.0000, 0.5000],
[0.0000, 0.5000, 0.0000],
[1.0000, 0.5000, 0.0000],
[0.5000, 0.0000, 0.0000],
[0.0000, 0.5000, 1.0000],
[1.0000, 0.5000, 1.0000],
[0.0000, 0.0000, 0.5000],
]
)
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5], [3, 5, 6], [5, 4, 7]])
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
expected_verts = convert_to_local(expected_verts, 2)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
def test_case7(self):
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D)
volume_data[0, 0, 0, 0] = 0
volume_data[0, 1, 0, 1] = 0
volume_data[0, 1, 1, 0] = 0
volume_data[0, 0, 1, 1] = 0
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
expected_verts = torch.tensor(
[
[0.5000, 1.0000, 1.0000],
[0.0000, 0.5000, 1.0000],
[0.0000, 1.0000, 0.5000],
[1.0000, 0.0000, 0.5000],
[0.5000, 0.0000, 1.0000],
[1.0000, 0.5000, 1.0000],
[0.5000, 0.0000, 0.0000],
[0.0000, 0.5000, 0.0000],
[0.0000, 0.0000, 0.5000],
[0.5000, 1.0000, 0.0000],
[1.0000, 0.5000, 0.0000],
[1.0000, 1.0000, 0.5000],
]
)
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]])
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
expected_verts = convert_to_local(expected_verts, 2)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
def test_case8(self):
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D)
volume_data[0, 0, 0, 0] = 0
volume_data[0, 0, 0, 1] = 0
volume_data[0, 1, 0, 1] = 0
volume_data[0, 0, 1, 1] = 0
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
expected_verts = torch.tensor(
[
[1.0000, 0.5000, 1.0000],
[0.0000, 1.0000, 0.5000],
[0.5000, 1.0000, 1.0000],
[1.0000, 0.0000, 0.5000],
[0.0000, 0.5000, 0.0000],
[0.5000, 0.0000, 0.0000],
]
)
expected_faces = torch.tensor([[0, 1, 2], [3, 1, 0], [3, 4, 1], [3, 5, 4]])
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
expected_verts = convert_to_local(expected_verts, 2)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
def test_case9(self):
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D)
volume_data[0, 1, 0, 0] = 0
volume_data[0, 0, 0, 1] = 0
volume_data[0, 1, 0, 1] = 0
volume_data[0, 0, 1, 1] = 0
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
expected_verts = torch.tensor(
[
[0.5000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.5000],
[0.0000, 1.0000, 0.5000],
[1.0000, 0.5000, 1.0000],
[1.0000, 0.5000, 0.0000],
[0.5000, 1.0000, 1.0000],
]
)
expected_faces = torch.tensor([[0, 1, 2], [0, 2, 3], [0, 3, 4], [5, 3, 2]])
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
expected_verts = convert_to_local(expected_verts, 2)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
def test_case10(self):
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D)
volume_data[0, 0, 0, 0] = 0
volume_data[0, 1, 1, 1] = 0
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
expected_verts = torch.tensor(
[
[0.5000, 0.0000, 0.0000],
[0.0000, 0.5000, 0.0000],
[0.0000, 0.0000, 0.5000],
[1.0000, 1.0000, 0.5000],
[1.0000, 0.5000, 1.0000],
[0.5000, 1.0000, 1.0000],
]
)
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5]])
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
expected_verts = convert_to_local(expected_verts, 2)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
def test_case11(self):
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D)
volume_data[0, 0, 0, 0] = 0
volume_data[0, 1, 0, 0] = 0
volume_data[0, 1, 1, 1] = 0
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
expected_verts = torch.tensor(
[
[1.0000, 0.0000, 0.5000],
[0.0000, 0.5000, 0.0000],
[0.0000, 0.0000, 0.5000],
[1.0000, 0.5000, 0.0000],
[1.0000, 1.0000, 0.5000],
[1.0000, 0.5000, 1.0000],
[0.5000, 1.0000, 1.0000],
]
)
expected_faces = torch.tensor([[0, 1, 2], [0, 3, 1], [4, 5, 6]])
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
expected_verts = convert_to_local(expected_verts, 2)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
def test_case12(self):
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D)
volume_data[0, 1, 0, 0] = 0
volume_data[0, 0, 1, 0] = 0
volume_data[0, 1, 1, 1] = 0
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
expected_verts = torch.tensor(
[
[1.0000, 0.0000, 0.5000],
[1.0000, 0.5000, 0.0000],
[0.5000, 0.0000, 0.0000],
[1.0000, 1.0000, 0.5000],
[1.0000, 0.5000, 1.0000],
[0.5000, 1.0000, 1.0000],
[0.0000, 0.5000, 0.0000],
[0.5000, 1.0000, 0.0000],
[0.0000, 1.0000, 0.5000],
]
)
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
expected_verts = convert_to_local(expected_verts, 2)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
def test_case13(self):
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D)
volume_data[0, 0, 0, 0] = 0
volume_data[0, 0, 1, 0] = 0
volume_data[0, 1, 0, 1] = 0
volume_data[0, 1, 1, 1] = 0
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
expected_verts = torch.tensor(
[
[1.0000, 0.0000, 0.5000],
[0.5000, 0.0000, 1.0000],
[1.0000, 1.0000, 0.5000],
[0.5000, 1.0000, 1.0000],
[0.0000, 0.0000, 0.5000],
[0.5000, 0.0000, 0.0000],
[0.5000, 1.0000, 0.0000],
[0.0000, 1.0000, 0.5000],
]
)
expected_faces = torch.tensor([[0, 1, 2], [2, 1, 3], [4, 5, 6], [4, 6, 7]])
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
expected_verts = convert_to_local(expected_verts, 2)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
def test_case14(self):
volume_data = torch.ones(1, 2, 2, 2) # (B, W, H, D)
volume_data[0, 0, 0, 0] = 0
volume_data[0, 0, 0, 1] = 0
volume_data[0, 1, 0, 1] = 0
volume_data[0, 1, 1, 1] = 0
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
expected_verts = torch.tensor(
[
[0.5000, 0.0000, 0.0000],
[0.0000, 0.5000, 0.0000],
[0.0000, 0.5000, 1.0000],
[1.0000, 1.0000, 0.5000],
[1.0000, 0.0000, 0.5000],
[0.5000, 1.0000, 1.0000],
]
)
expected_faces = torch.tensor([[0, 1, 2], [0, 2, 3], [0, 3, 4], [3, 2, 5]])
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
expected_verts = convert_to_local(expected_verts, 2)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
class TestMarchingCubes(TestCaseMixin, unittest.TestCase):
def test_single_point(self):
volume_data = torch.zeros(1, 3, 3, 3) # (B, W, H, D)
volume_data[0, 1, 1, 1] = 1
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
expected_verts = torch.tensor(
[
[1.0000, 0.5000, 1.0000],
[1.0000, 1.0000, 0.5000],
[0.5000, 1.0000, 1.0000],
[1.5000, 1.0000, 1.0000],
[1.0000, 1.5000, 1.0000],
[1.0000, 1.0000, 1.5000],
]
)
expected_faces = torch.tensor(
[
[0, 1, 2],
[1, 0, 3],
[1, 4, 2],
[1, 3, 4],
[0, 2, 5],
[3, 0, 5],
[2, 4, 5],
[3, 5, 4],
]
)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True)
expected_verts = convert_to_local(expected_verts, 3)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all())
verts, faces = marching_cubes(volume_data, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all())
def test_cube(self):
volume_data = torch.zeros(1, 5, 5, 5) # (B, W, H, D)
volume_data[0, 1, 1, 1] = 1
volume_data[0, 1, 1, 2] = 1
volume_data[0, 2, 1, 1] = 1
volume_data[0, 2, 1, 2] = 1
volume_data[0, 1, 2, 1] = 1
volume_data[0, 1, 2, 2] = 1
volume_data[0, 2, 2, 1] = 1
volume_data[0, 2, 2, 2] = 1
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
expected_verts = torch.tensor(
[
[1.0000, 0.9000, 1.0000],
[1.0000, 1.0000, 0.9000],
[0.9000, 1.0000, 1.0000],
[2.0000, 0.9000, 1.0000],
[2.0000, 1.0000, 0.9000],
[2.1000, 1.0000, 1.0000],
[1.0000, 2.0000, 0.9000],
[0.9000, 2.0000, 1.0000],
[2.0000, 2.0000, 0.9000],
[2.1000, 2.0000, 1.0000],
[1.0000, 2.1000, 1.0000],
[2.0000, 2.1000, 1.0000],
[1.0000, 0.9000, 2.0000],
[0.9000, 1.0000, 2.0000],
[2.0000, 0.9000, 2.0000],
[2.1000, 1.0000, 2.0000],
[0.9000, 2.0000, 2.0000],
[2.1000, 2.0000, 2.0000],
[1.0000, 2.1000, 2.0000],
[2.0000, 2.1000, 2.0000],
[1.0000, 1.0000, 2.1000],
[2.0000, 1.0000, 2.1000],
[1.0000, 2.0000, 2.1000],
[2.0000, 2.0000, 2.1000],
]
)
expected_faces = torch.tensor(
[
[0, 1, 2],
[0, 3, 4],
[1, 0, 4],
[4, 3, 5],
[1, 6, 7],
[2, 1, 7],
[4, 8, 1],
[1, 8, 6],
[8, 4, 5],
[9, 8, 5],
[6, 10, 7],
[6, 8, 11],
[10, 6, 11],
[8, 9, 11],
[12, 0, 2],
[13, 12, 2],
[3, 0, 14],
[14, 0, 12],
[15, 5, 3],
[14, 15, 3],
[2, 7, 13],
[7, 16, 13],
[5, 15, 9],
[9, 15, 17],
[10, 18, 16],
[7, 10, 16],
[11, 19, 10],
[19, 18, 10],
[9, 17, 19],
[11, 9, 19],
[12, 13, 20],
[14, 12, 20],
[21, 14, 20],
[15, 14, 21],
[13, 16, 22],
[20, 13, 22],
[21, 20, 23],
[20, 22, 23],
[17, 15, 21],
[23, 17, 21],
[16, 18, 22],
[23, 22, 18],
[19, 23, 18],
[17, 23, 19],
]
)
verts, faces = marching_cubes_naive(volume_data, 0.9, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, 0.9, return_local_coords=False)
verts2, faces2 = marching_cubes(volume_data, 0.9, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(volume_data, 0.9, return_local_coords=True)
expected_verts = convert_to_local(expected_verts, 5)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
# Check all values are in the range [-1, 1]
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all())
verts, faces = marching_cubes(volume_data, 0.9, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all())
def test_cube_no_duplicate_verts(self):
volume_data = torch.zeros(1, 5, 5, 5) # (B, W, H, D)
volume_data[0, 1, 1, 1] = 1
volume_data[0, 1, 1, 2] = 1
volume_data[0, 2, 1, 1] = 1
volume_data[0, 2, 1, 2] = 1
volume_data[0, 1, 2, 1] = 1
volume_data[0, 1, 2, 2] = 1
volume_data[0, 2, 2, 1] = 1
volume_data[0, 2, 2, 2] = 1
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume_data, 1, return_local_coords=False)
expected_verts = torch.tensor(
[
[2.0, 1.0, 1.0],
[2.0, 2.0, 1.0],
[1.0, 1.0, 1.0],
[1.0, 2.0, 1.0],
[2.0, 1.0, 1.0],
[1.0, 1.0, 1.0],
[2.0, 1.0, 2.0],
[1.0, 1.0, 2.0],
[1.0, 1.0, 1.0],
[1.0, 2.0, 1.0],
[1.0, 1.0, 2.0],
[1.0, 2.0, 2.0],
[2.0, 1.0, 1.0],
[2.0, 1.0, 2.0],
[2.0, 2.0, 1.0],
[2.0, 2.0, 2.0],
[2.0, 2.0, 1.0],
[2.0, 2.0, 2.0],
[1.0, 2.0, 1.0],
[1.0, 2.0, 2.0],
[2.0, 1.0, 2.0],
[1.0, 1.0, 2.0],
[2.0, 2.0, 2.0],
[1.0, 2.0, 2.0],
]
)
expected_faces = torch.tensor(
[
[0, 1, 2],
[2, 1, 3],
[4, 5, 6],
[6, 5, 7],
[8, 9, 10],
[9, 11, 10],
[12, 13, 14],
[14, 13, 15],
[16, 17, 18],
[17, 19, 18],
[20, 21, 22],
[21, 23, 22],
]
)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume_data, 1, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(volume_data, 1, return_local_coords=True)
expected_verts = convert_to_local(expected_verts, 5)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all())
def test_sphere(self):
# (B, W, H, D)
volume = torch.Tensor(
[
[
[(x - 10) ** 2 + (y - 10) ** 2 + (z - 10) ** 2 for z in range(20)]
for y in range(20)
]
for x in range(20)
]
).unsqueeze(0)
volume = volume.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(
volume, isolevel=64, return_local_coords=False
)
data_filename = "test_marching_cubes_data/sphere_level64.pickle"
filename = os.path.join(DATA_DIR, data_filename)
with open(filename, "rb") as file:
verts_and_faces = pickle.load(file)
expected_verts = verts_and_faces["verts"]
expected_faces = verts_and_faces["faces"]
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes(volume, 64, return_local_coords=False)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
verts, faces = marching_cubes_naive(
volume, isolevel=64, return_local_coords=True
)
expected_verts = convert_to_local(expected_verts, 20)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
# Check all values are in the range [-1, 1]
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all())
verts, faces = marching_cubes(volume, 64, return_local_coords=True)
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all())
# Uses skimage.draw.ellipsoid
def test_double_ellipsoid(self):
if USE_SCIKIT:
import numpy as np
from skimage.draw import ellipsoid
ellip_base = ellipsoid(6, 10, 16, levelset=True)
ellip_double = np.concatenate(
(ellip_base[:-1, ...], ellip_base[2:, ...]), axis=0
)
volume = torch.Tensor(ellip_double).unsqueeze(0)
volume = volume.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume, isolevel=0.001)
verts2, faces2 = marching_cubes(volume, isolevel=0.001)
data_filename = "test_marching_cubes_data/double_ellipsoid.pickle"
filename = os.path.join(DATA_DIR, data_filename)
with open(filename, "rb") as file:
verts_and_faces = pickle.load(file)
expected_verts = verts_and_faces["verts"]
expected_faces = verts_and_faces["faces"]
self.assertClose(verts[0], expected_verts)
self.assertClose(faces[0], expected_faces)
self.assertClose(verts2[0], expected_verts)
self.assertClose(faces2[0], expected_faces)
def test_single_large_ellipsoid(self):
if USE_SCIKIT:
from skimage.draw import ellipsoid
ellip_base = ellipsoid(50, 60, 16, levelset=True)
volume = torch.Tensor(ellip_base).unsqueeze(0).cpu()
verts, faces = marching_cubes_naive(volume, 0)
verts2, faces2 = marching_cubes(volume, 0)
self.assertClose(verts[0], verts2[0], atol=1e-6)
self.assertClose(faces[0], faces2[0], atol=1e-6)
def test_cube_surface_area(self):
if USE_SCIKIT:
from skimage.measure import marching_cubes_classic, mesh_surface_area
volume_data = torch.zeros(1, 5, 5, 5)
volume_data[0, 1, 1, 1] = 1
volume_data[0, 1, 1, 2] = 1
volume_data[0, 2, 1, 1] = 1
volume_data[0, 2, 1, 2] = 1
volume_data[0, 1, 2, 1] = 1
volume_data[0, 1, 2, 2] = 1
volume_data[0, 2, 2, 1] = 1
volume_data[0, 2, 2, 2] = 1
volume_data = volume_data.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False)
verts_c, faces_c = marching_cubes(volume_data, return_local_coords=False)
verts_sci, faces_sci = marching_cubes_classic(volume_data[0])
surf = mesh_surface_area(verts[0], faces[0])
surf_c = mesh_surface_area(verts_c[0], faces_c[0])
surf_sci = mesh_surface_area(verts_sci, faces_sci)
self.assertClose(surf, surf_sci)
self.assertClose(surf, surf_c)
def test_sphere_surface_area(self):
if USE_SCIKIT:
from skimage.measure import marching_cubes_classic, mesh_surface_area
# (B, W, H, D)
volume = torch.Tensor(
[
[
[
(x - 10) ** 2 + (y - 10) ** 2 + (z - 10) ** 2
for z in range(20)
]
for y in range(20)
]
for x in range(20)
]
).unsqueeze(0)
volume = volume.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume, isolevel=64)
verts_c, faces_c = marching_cubes(volume, isolevel=64)
verts_sci, faces_sci = marching_cubes_classic(volume[0], level=64)
surf = mesh_surface_area(verts[0], faces[0])
surf_c = mesh_surface_area(verts_c[0], faces_c[0])
surf_sci = mesh_surface_area(verts_sci, faces_sci)
self.assertClose(surf, surf_sci)
self.assertClose(surf, surf_c)
def test_double_ellipsoid_surface_area(self):
if USE_SCIKIT:
import numpy as np
from skimage.draw import ellipsoid
from skimage.measure import marching_cubes_classic, mesh_surface_area
ellip_base = ellipsoid(6, 10, 16, levelset=True)
ellip_double = np.concatenate(
(ellip_base[:-1, ...], ellip_base[2:, ...]), axis=0
)
volume = torch.Tensor(ellip_double).unsqueeze(0)
volume = volume.permute(0, 3, 2, 1) # (B, D, H, W)
verts, faces = marching_cubes_naive(volume, isolevel=0)
verts_c, faces_c = marching_cubes(volume, isolevel=0)
verts_sci, faces_sci = marching_cubes_classic(volume[0], level=0)
surf = mesh_surface_area(verts[0], faces[0])
surf_c = mesh_surface_area(verts_c[0], faces_c[0])
surf_sci = mesh_surface_area(verts_sci, faces_sci)
self.assertClose(surf, surf_sci)
self.assertClose(surf, surf_c)
def test_ball_example(self):
N = 30
axis_tensor = torch.arange(0, N)
X, Y, Z = torch.meshgrid(axis_tensor, axis_tensor, axis_tensor, indexing="ij")
u = (X - 15) ** 2 + (Y - 15) ** 2 + (Z - 15) ** 2 - 8**2
u = u[None].float()
verts, faces = marching_cubes_naive(u, 0, return_local_coords=False)
verts2, faces2 = marching_cubes(u, 0, return_local_coords=False)
self.assertClose(verts2[0], verts[0])
self.assertClose(faces2[0], faces[0])
verts3, faces3 = marching_cubes(u.cuda(), 0, return_local_coords=False)
self.assertEqual(len(verts3), len(verts))
self.assertEqual(len(faces3), len(faces))
@staticmethod
def marching_cubes_with_init(algo_type: str, batch_size: int, V: int, device: str):
device = torch.device(device)
volume_data = torch.rand(
(batch_size, V, V, V), dtype=torch.float32, device=device
)
algo_table = {
"naive": marching_cubes_naive,
"extension": marching_cubes,
}
def convert():
algo_table[algo_type](volume_data, return_local_coords=False)
torch.cuda.synchronize()
return convert