#!/usr/bin/env python # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe """" This file is the entry point for launching experiments with Implicitron. Launch Training --------------- Experiment config .yaml files are located in the `projects/implicitron_trainer/configs` folder. To launch an experiment, specify the name of the file. Specific config values can also be overridden from the command line, for example: ``` ./experiment.py --config-name base_config.yaml override.param.one=42 override.param.two=84 ``` Main functions --------------- - The Experiment class defines `run` which creates the model, optimizer, and other objects used in training, then starts TrainingLoop's `run` function. - TrainingLoop takes care of the actual training logic: forward and backward passes, evaluation and testing, as well as model checkpointing, visualization, and metric printing. Outputs -------- The outputs of the experiment are saved and logged in multiple ways: - Checkpoints: Model, optimizer and stats are stored in the directory named by the `exp_dir` key from the config file / CLI parameters. - Stats Stats are logged and plotted to the file "train_stats.pdf" in the same directory. The stats are also saved as part of the checkpoint file. - Visualizations Predictions are plotted to a visdom server running at the port specified by the `visdom_server` and `visdom_port` keys in the config file. """ import logging import os import warnings from dataclasses import field import hydra import torch from accelerate import Accelerator from omegaconf import DictConfig, OmegaConf from packaging import version from pytorch3d.implicitron.dataset.data_source import ( DataSourceBase, ImplicitronDataSource, ) from pytorch3d.implicitron.models.base_model import ImplicitronModelBase from pytorch3d.implicitron.models.renderer.multipass_ea import ( MultiPassEmissionAbsorptionRenderer, ) from pytorch3d.implicitron.models.renderer.ray_sampler import AdaptiveRaySampler from pytorch3d.implicitron.tools.config import ( Configurable, expand_args_fields, remove_unused_components, run_auto_creation, ) from .impl.model_factory import ModelFactoryBase from .impl.optimizer_factory import OptimizerFactoryBase from .impl.training_loop import TrainingLoopBase from .impl.utils import seed_all_random_engines logger = logging.getLogger(__name__) # workaround for https://github.com/facebookresearch/hydra/issues/2262 _RUN = hydra.types.RunMode.RUN if version.parse(hydra.__version__) < version.Version("1.1"): raise ValueError( f"Hydra version {hydra.__version__} is too old." " (Implicitron requires version 1.1 or later.)" ) try: # only makes sense in FAIR cluster import pytorch3d.implicitron.fair_cluster.slurm # noqa: F401 except ModuleNotFoundError: pass no_accelerate = os.environ.get("PYTORCH3D_NO_ACCELERATE") is not None class Experiment(Configurable): # pyre-ignore: 13 """ This class is at the top level of Implicitron's config hierarchy. Its members are high-level components necessary for training an implicit rende- ring network. Members: data_source: An object that produces datasets and dataloaders. model_factory: An object that produces an implicit rendering model as well as its corresponding Stats object. optimizer_factory: An object that produces the optimizer and lr scheduler. training_loop: An object that runs training given the outputs produced by the data_source, model_factory and optimizer_factory. seed: A random seed to ensure reproducibility. detect_anomaly: Whether torch.autograd should detect anomalies. Useful for debugging, but might slow down the training. exp_dir: Root experimentation directory. Checkpoints and training stats will be saved here. """ data_source: DataSourceBase data_source_class_type: str = "ImplicitronDataSource" model_factory: ModelFactoryBase model_factory_class_type: str = "ImplicitronModelFactory" optimizer_factory: OptimizerFactoryBase optimizer_factory_class_type: str = "ImplicitronOptimizerFactory" training_loop: TrainingLoopBase training_loop_class_type: str = "ImplicitronTrainingLoop" seed: int = 42 detect_anomaly: bool = False exp_dir: str = "./data/default_experiment/" hydra: dict = field( default_factory=lambda: { "run": {"dir": "."}, # Make hydra not change the working dir. "output_subdir": None, # disable storing the .hydra logs "mode": _RUN, } ) def __post_init__(self): seed_all_random_engines( self.seed ) # Set all random engine seeds for reproducibility run_auto_creation(self) def run(self) -> None: # Initialize the accelerator if desired. if no_accelerate: accelerator = None device = torch.device("cuda:0") else: accelerator = Accelerator(device_placement=False) logger.info(accelerator.state) device = accelerator.device logger.info(f"Running experiment on device: {device}") os.makedirs(self.exp_dir, exist_ok=True) # set the debug mode if self.detect_anomaly: logger.info("Anomaly detection!") torch.autograd.set_detect_anomaly(self.detect_anomaly) # Initialize the datasets and dataloaders. datasets, dataloaders = self.data_source.get_datasets_and_dataloaders() # Init the model and the corresponding Stats object. model = self.model_factory( accelerator=accelerator, exp_dir=self.exp_dir, ) stats = self.training_loop.load_stats( log_vars=model.log_vars, exp_dir=self.exp_dir, resume=self.model_factory.resume, resume_epoch=self.model_factory.resume_epoch, # pyre-ignore [16] ) start_epoch = stats.epoch + 1 model.to(device) # Init the optimizer and LR scheduler. optimizer, scheduler = self.optimizer_factory( accelerator=accelerator, exp_dir=self.exp_dir, last_epoch=start_epoch, model=model, resume=self.model_factory.resume, resume_epoch=self.model_factory.resume_epoch, ) # Wrap all modules in the distributed library # Note: we don't pass the scheduler to prepare as it # doesn't need to be stepped at each optimizer step train_loader = dataloaders.train val_loader = dataloaders.val test_loader = dataloaders.test if accelerator is not None: ( model, optimizer, train_loader, val_loader, ) = accelerator.prepare(model, optimizer, train_loader, val_loader) # Enter the main training loop. self.training_loop.run( train_loader=train_loader, val_loader=val_loader, test_loader=test_loader, # pyre-ignore[6] train_dataset=datasets.train, model=model, optimizer=optimizer, scheduler=scheduler, accelerator=accelerator, device=device, exp_dir=self.exp_dir, stats=stats, seed=self.seed, ) def _setup_envvars_for_cluster() -> bool: """ Prepares to run on cluster if relevant. Returns whether FAIR cluster in use. """ # TODO: How much of this is needed in general? try: import submitit except ImportError: return False try: # Only needed when launching on cluster with slurm and submitit job_env = submitit.JobEnvironment() except RuntimeError: return False os.environ["LOCAL_RANK"] = str(job_env.local_rank) os.environ["RANK"] = str(job_env.global_rank) os.environ["WORLD_SIZE"] = str(job_env.num_tasks) os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "42918" logger.info( "Num tasks %s, global_rank %s" % (str(job_env.num_tasks), str(job_env.global_rank)) ) return True def dump_cfg(cfg: DictConfig) -> None: remove_unused_components(cfg) # dump the exp config to the exp dir os.makedirs(cfg.exp_dir, exist_ok=True) try: cfg_filename = os.path.join(cfg.exp_dir, "expconfig.yaml") OmegaConf.save(config=cfg, f=cfg_filename) except PermissionError: warnings.warn("Can't dump config due to insufficient permissions!") expand_args_fields(Experiment) cs = hydra.core.config_store.ConfigStore.instance() cs.store(name="default_config", node=Experiment) @hydra.main(config_path="./configs/", config_name="default_config") def experiment(cfg: DictConfig) -> None: # CUDA_VISIBLE_DEVICES must have been set. if "CUDA_DEVICE_ORDER" not in os.environ: os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" if not _setup_envvars_for_cluster(): logger.info("Running locally") # TODO: The following may be needed for hydra/submitit it to work expand_args_fields(ImplicitronModelBase) expand_args_fields(AdaptiveRaySampler) expand_args_fields(MultiPassEmissionAbsorptionRenderer) expand_args_fields(ImplicitronDataSource) experiment = Experiment(**cfg) dump_cfg(cfg) experiment.run() if __name__ == "__main__": experiment()