# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from itertools import product from fvcore.common.benchmark import benchmark from tests.test_blending import TestBlending def bm_blending() -> None: devices = ["cuda"] kwargs_list = [] num_meshes = [8] image_size = [64, 128, 256] faces_per_pixel = [2, 50, 100] backend = ["pytorch", "custom"] test_cases = product(num_meshes, image_size, faces_per_pixel, devices, backend) for case in test_cases: n, s, k, d, b = case kwargs_list.append( { "num_meshes": n, "image_size": s, "faces_per_pixel": k, "device": d, "backend": b, } ) benchmark( TestBlending.bm_sigmoid_alpha_blending, "SIGMOID_ALPHA_BLENDING_PYTORCH", kwargs_list, warmup_iters=1, ) kwargs_list = [case for case in kwargs_list if case["backend"] == "pytorch"] benchmark( TestBlending.bm_softmax_blending, "SOFTMAX_BLENDING_PYTORCH", kwargs_list, warmup_iters=1, ) kwargs_list = [] faces_per_pixel = [2, 10] backend = ["pytorch"] test_cases = product(num_meshes, image_size, faces_per_pixel, devices, backend) for case in test_cases: n, s, k, d, b = case kwargs_list.append( { "num_meshes": n, "image_size": s, "faces_per_pixel": k, "device": d, "backend": b, } ) benchmark( TestBlending.bm_splatter_blending, "SPLATTER_BLENDING_PYTORCH", kwargs_list, warmup_iters=1, ) if __name__ == "__main__": bm_blending()