# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from itertools import product import torch from fvcore.common.benchmark import benchmark from tests.test_chamfer import TestChamfer def bm_chamfer() -> None: # Currently disabled. return devices = ["cpu"] if torch.cuda.is_available(): devices.append("cuda:0") kwargs_list_naive = [] batch_size = [1, 32] return_normals = [True, False] test_cases = product(batch_size, return_normals, devices) for case in test_cases: b, n, d = case kwargs_list_naive.append( {"batch_size": b, "P1": 32, "P2": 64, "return_normals": n, "device": d} ) benchmark( TestChamfer.chamfer_naive_with_init, "CHAMFER_NAIVE", kwargs_list_naive, warmup_iters=1, ) if torch.cuda.is_available(): device = "cuda:0" kwargs_list = [] batch_size = [1, 32] P1 = [32, 1000, 10000] P2 = [64, 3000, 30000] return_normals = [True, False] homogeneous = [True, False] test_cases = product(batch_size, P1, P2, return_normals, homogeneous) for case in test_cases: b, p1, p2, n, h = case kwargs_list.append( { "batch_size": b, "P1": p1, "P2": p2, "return_normals": n, "homogeneous": h, "device": device, } ) benchmark(TestChamfer.chamfer_with_init, "CHAMFER", kwargs_list, warmup_iters=1) if __name__ == "__main__": bm_chamfer()