# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from itertools import product from fvcore.common.benchmark import benchmark from tests.test_iou_box3d import TestIoU3D def bm_iou_box3d() -> None: # Realistic use cases N = [30, 100] M = [5, 10, 100] kwargs_list = [] test_cases = product(N, M) for case in test_cases: n, m = case kwargs_list.append({"N": n, "M": m, "device": "cuda:0"}) benchmark(TestIoU3D.iou, "3D_IOU", kwargs_list, warmup_iters=1) # Comparison of C++/CUDA kwargs_list = [] N = [1, 4, 8, 16] devices = ["cpu", "cuda:0"] test_cases = product(N, N, devices) for case in test_cases: n, m, d = case kwargs_list.append({"N": n, "M": m, "device": d}) benchmark(TestIoU3D.iou, "3D_IOU", kwargs_list, warmup_iters=1) # Naive PyTorch N = [1, 4] kwargs_list = [] test_cases = product(N, N) for case in test_cases: n, m = case kwargs_list.append({"N": n, "M": m, "device": "cuda:0"}) benchmark(TestIoU3D.iou_naive, "3D_IOU_NAIVE", kwargs_list, warmup_iters=1) # Sampling based method num_samples = [2000, 5000] kwargs_list = [] test_cases = product(N, N, num_samples) for case in test_cases: n, m, s = case kwargs_list.append({"N": n, "M": m, "num_samples": s, "device": "cuda:0"}) benchmark(TestIoU3D.iou_sampling, "3D_IOU_SAMPLING", kwargs_list, warmup_iters=1) if __name__ == "__main__": bm_iou_box3d()