# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from itertools import product import torch from fvcore.common.benchmark import benchmark from tests.test_packed_to_padded import TestPackedToPadded def bm_packed_to_padded() -> None: kwargs_list = [] backend = ["cpu"] if torch.cuda.is_available(): backend.append("cuda:0") num_meshes = [2, 10, 32] num_verts = [100, 1000] num_faces = [300, 3000] num_ds = [0, 1, 16] test_cases = product(num_meshes, num_verts, num_faces, num_ds, backend) for case in test_cases: n, v, f, d, b = case kwargs_list.append( {"num_meshes": n, "num_verts": v, "num_faces": f, "num_d": d, "device": b} ) benchmark( TestPackedToPadded.packed_to_padded_with_init, "PACKED_TO_PADDED", kwargs_list, warmup_iters=1, ) benchmark( TestPackedToPadded.packed_to_padded_with_init_torch, "PACKED_TO_PADDED_TORCH", kwargs_list, warmup_iters=1, ) if __name__ == "__main__": bm_packed_to_padded()