# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from pytorch3d.implicitron.models.utils import preprocess_input, weighted_sum_losses class TestUtils(unittest.TestCase): def test_prepare_inputs_wrong_num_dim(self): img = torch.randn(3, 3, 3) text = ( "Model received unbatched inputs. " + "Perhaps they came from a FrameData which had not been collated." ) with self.assertRaisesRegex(ValueError, text): img, fg_prob, depth_map = preprocess_input( img, None, None, True, True, 0.5, (0.0, 0.0, 0.0) ) def test_prepare_inputs_mask_image_true(self): batch, channels, height, width = 2, 3, 10, 10 img = torch.ones(batch, channels, height, width) # Create a mask on the lower triangular matrix fg_prob = torch.tril(torch.ones(batch, 1, height, width)) * 0.3 out_img, out_fg_prob, out_depth_map = preprocess_input( img, fg_prob, None, True, False, 0.3, (0.0, 0.0, 0.0) ) self.assertTrue(torch.equal(out_img, torch.tril(img))) self.assertTrue(torch.equal(out_fg_prob, fg_prob >= 0.3)) self.assertIsNone(out_depth_map) def test_prepare_inputs_mask_depth_true(self): batch, channels, height, width = 2, 3, 10, 10 img = torch.ones(batch, channels, height, width) depth_map = torch.randn(batch, channels, height, width) # Create a mask on the lower triangular matrix fg_prob = torch.tril(torch.ones(batch, 1, height, width)) * 0.3 out_img, out_fg_prob, out_depth_map = preprocess_input( img, fg_prob, depth_map, False, True, 0.3, (0.0, 0.0, 0.0) ) self.assertTrue(torch.equal(out_img, img)) self.assertTrue(torch.equal(out_fg_prob, fg_prob >= 0.3)) self.assertTrue(torch.equal(out_depth_map, torch.tril(depth_map))) def test_weighted_sum_losses(self): preds = {"a": torch.tensor(2), "b": torch.tensor(2)} weights = {"a": 2.0, "b": 0.0} loss = weighted_sum_losses(preds, weights) self.assertEqual(loss, 4.0) def test_weighted_sum_losses_raise_warning(self): preds = {"a": torch.tensor(2), "b": torch.tensor(2)} weights = {"c": 2.0, "d": 2.0} self.assertIsNone(weighted_sum_losses(preds, weights))