# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import unittest import torch from pytorch3d.implicitron.dataset.blender_dataset_map_provider import ( BlenderDatasetMapProvider, ) from pytorch3d.implicitron.dataset.data_source import ImplicitronDataSource from pytorch3d.implicitron.dataset.dataset_base import FrameData from pytorch3d.implicitron.dataset.llff_dataset_map_provider import ( LlffDatasetMapProvider, ) from pytorch3d.implicitron.tools.config import expand_args_fields, get_default_args from pytorch3d.renderer import PerspectiveCameras from tests.common_testing import TestCaseMixin # These tests are only run internally, where the data is available. internal = os.environ.get("FB_TEST", False) inside_re_worker = os.environ.get("INSIDE_RE_WORKER", False) @unittest.skipUnless(internal, "no data") class TestDataLlff(TestCaseMixin, unittest.TestCase): def test_synthetic(self): if inside_re_worker: return expand_args_fields(BlenderDatasetMapProvider) provider = BlenderDatasetMapProvider( base_dir="manifold://co3d/tree/nerf_data/nerf_synthetic/lego", object_name="lego", ) dataset_map = provider.get_dataset_map() known_matrix = torch.zeros(1, 4, 4) known_matrix[0, 0, 0] = 2.7778 known_matrix[0, 1, 1] = 2.7778 known_matrix[0, 2, 3] = 1 known_matrix[0, 3, 2] = 1 for name, length in [("train", 100), ("val", 100), ("test", 200)]: dataset = getattr(dataset_map, name) self.assertEqual(len(dataset), length) # try getting a value value = dataset[0] self.assertEqual(value.image_rgb.shape, (3, 800, 800)) self.assertEqual(value.fg_probability.shape, (1, 800, 800)) # corner of image is background self.assertEqual(value.fg_probability[0, 0, 0], 0) self.assertEqual(value.fg_probability.max(), 1.0) self.assertIsInstance(value.camera, PerspectiveCameras) self.assertEqual(len(value.camera), 1) self.assertIsNone(value.camera.K) matrix = value.camera.get_projection_transform().get_matrix() self.assertClose(matrix, known_matrix, atol=1e-4) self.assertIsInstance(value, FrameData) def test_llff(self): if inside_re_worker: return expand_args_fields(LlffDatasetMapProvider) provider = LlffDatasetMapProvider( base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern", object_name="fern", downscale_factor=8, ) dataset_map = provider.get_dataset_map() known_matrix = torch.zeros(1, 4, 4) known_matrix[0, 0, 0] = 2.1564 known_matrix[0, 1, 1] = 2.1564 known_matrix[0, 2, 3] = 1 known_matrix[0, 3, 2] = 1 for name, length, frame_type in [ ("train", 17, "known"), ("test", 3, "unseen"), ("val", 3, "unseen"), ]: dataset = getattr(dataset_map, name) self.assertEqual(len(dataset), length) # try getting a value value = dataset[0] self.assertIsInstance(value, FrameData) self.assertEqual(value.frame_type, frame_type) self.assertEqual(value.image_rgb.shape, (3, 378, 504)) self.assertIsInstance(value.camera, PerspectiveCameras) self.assertEqual(len(value.camera), 1) self.assertIsNone(value.camera.K) matrix = value.camera.get_projection_transform().get_matrix() self.assertClose(matrix, known_matrix, atol=1e-4) self.assertEqual(len(dataset_map.test.get_eval_batches()), 3) for batch in dataset_map.test.get_eval_batches(): self.assertEqual(len(batch), 1) self.assertEqual(dataset_map.test[batch[0]].frame_type, "unseen") def test_include_known_frames(self): if inside_re_worker: return expand_args_fields(LlffDatasetMapProvider) provider = LlffDatasetMapProvider( base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern", object_name="fern", n_known_frames_for_test=2, ) dataset_map = provider.get_dataset_map() for name, types in [ ("train", ["known"] * 17), ("val", ["unseen"] * 3 + ["known"] * 17), ("test", ["unseen"] * 3 + ["known"] * 17), ]: dataset = getattr(dataset_map, name) self.assertEqual(len(dataset), len(types)) for i, frame_type in enumerate(types): value = dataset[i] self.assertEqual(value.frame_type, frame_type) self.assertIsNone(value.fg_probability) self.assertEqual(len(dataset_map.test.get_eval_batches()), 3) for batch in dataset_map.test.get_eval_batches(): self.assertEqual(len(batch), 3) self.assertEqual(dataset_map.test[batch[0]].frame_type, "unseen") for i in batch[1:]: self.assertEqual(dataset_map.test[i].frame_type, "known") def test_loaders(self): if inside_re_worker: return args = get_default_args(ImplicitronDataSource) args.dataset_map_provider_class_type = "BlenderDatasetMapProvider" dataset_args = args.dataset_map_provider_BlenderDatasetMapProvider_args dataset_args.object_name = "lego" dataset_args.base_dir = "manifold://co3d/tree/nerf_data/nerf_synthetic/lego" data_source = ImplicitronDataSource(**args) _, data_loaders = data_source.get_datasets_and_dataloaders() for i in data_loaders.train: self.assertEqual(i.frame_type, ["known"]) self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800)) for i in data_loaders.val: self.assertEqual(i.frame_type, ["unseen"]) self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800)) for i in data_loaders.test: self.assertEqual(i.frame_type, ["unseen"]) self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800)) cameras = data_source.all_train_cameras self.assertIsInstance(cameras, PerspectiveCameras) self.assertEqual(len(cameras), 100)