# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. """Test the sorting of the closest spheres.""" import logging import os import sys import unittest from os import path import imageio import numpy as np import torch from ..common_testing import TestCaseMixin # Making sure you can run this, even if pulsar hasn't been installed yet. sys.path.insert(0, path.join(path.dirname(__file__), "..", "..")) devices = [torch.device("cuda"), torch.device("cpu")] IN_REF_FP = path.join(path.dirname(__file__), "reference", "nr0000-in.pth") OUT_REF_FP = path.join(path.dirname(__file__), "reference", "nr0000-out.pth") class TestDepth(TestCaseMixin, unittest.TestCase): """Test different numbers of channels.""" def test_basic(self): from pytorch3d.renderer.points.pulsar import Renderer for device in devices: gamma = 1e-5 max_depth = 15.0 min_depth = 5.0 renderer = Renderer( 256, 256, 10000, orthogonal_projection=True, right_handed_system=False, n_channels=1, ).to(device) data = torch.load(IN_REF_FP, map_location="cpu") # For creating the reference files. # Use in case of updates. # data["pos"] = torch.rand_like(data["pos"]) # data["pos"][:, 0] = data["pos"][:, 0] * 2. - 1. # data["pos"][:, 1] = data["pos"][:, 1] * 2. - 1. # data["pos"][:, 2] = data["pos"][:, 2] + 9.5 result, result_info = renderer.forward( data["pos"].to(device), data["col"].to(device), data["rad"].to(device), data["cam_params"].to(device), gamma, min_depth=min_depth, max_depth=max_depth, return_forward_info=True, bg_col=torch.zeros(1, device=device, dtype=torch.float32), percent_allowed_difference=0.01, ) depth_map = Renderer.depth_map_from_result_info_nograd(result_info) depth_vis = (depth_map - depth_map[depth_map > 0].min()) * 200 / ( depth_map.max() - depth_map[depth_map > 0.0].min() ) + 50 if not os.environ.get("FB_TEST", False): imageio.imwrite( path.join( path.dirname(__file__), "test_out", "test_depth_test_basic_depth.png", ), depth_vis.cpu().numpy().astype(np.uint8), ) # For creating the reference files. # Use in case of updates. # torch.save( # data, path.join(path.dirname(__file__), "reference", "nr0000-in.pth") # ) # torch.save( # {"sphere_ids": sphere_ids, "depth_map": depth_map}, # path.join(path.dirname(__file__), "reference", "nr0000-out.pth"), # ) # sys.exit(0) reference = torch.load(OUT_REF_FP, map_location="cpu") self.assertClose(reference["depth_map"].to(device), depth_map) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) unittest.main()